

MC-X1

Excavator Indicate System

Installation and Calibration Manual

MC-X1 Excavator Indicate System Installation and Calibration Manual

Part Number 1022461-01 Rev B

For more information contact Synergy Positioning Systems or visit the Synergy Positioning Systems website at www.synergypositioning.co.nz All branches: Phone 0800 867 266 Email: info@synergypositioning.co.nz

©Copyright June 2018

All contents in this manual are copyrighted by Topcon. All rights reserved. The information contained herein may not be used, accessed, copied, stored, displayed, sold, modified, published, distributed, or otherwise reproduced without express written consent from Topcon.

Table of Contents

Preface	iv
Introduction	1
Indicate System Components	1
2D System Configuration	4
3D System Configuration	4
MC-X1 Connectivity and Configuration	5
Connecting to the MC-X Web Interface from a PC	5
Connecting to the MC-X Web Interface via MCXCONFIG	5
Viewing General Information and Firmware	6
Upgrading MC-X1 Firmware	6
Resetting the MC-X1	7
Assigning GR-i3 Vibration Mount to Auxiliary	8
Loading GR-i3 Firmware	9
Loading GNSS Firmware	11
System Verification	13
Loading EASy-Proof Radio Channels	15
Factory Reset for the GR-i3 via TRU	17
Configuring SL-100 for MC-X1 Communication	20
Configuring SL-100 for MC-X1 Communication	20 21
Configuring SL-100 for MC-X1 Communication	20 21 21
Configuring SL-100 for MC-X1 Communication	20 21 21 22
Configuring SL-100 for MC-X1 Communication	 20 21 21 22 23
Configuring SL-100 for MC-X1 Communication	 20 21 21 22 23 24
Configuring SL-100 for MC-X1 Communication Installation TS-i3 Sensors TS-i3 Sensor Orientation CAN Termination Hitch Sensor DogBone Sensor (Optional Mounting Location).	 20 21 22 23 24 25
Configuring SL-100 for MC-X1 Communication Installation TS-i3 Sensors TS-i3 Sensor Orientation CAN Termination Hitch Sensor DogBone Sensor (Optional Mounting Location). Tilt Bucket Sensor	 20 21 21 22 23 24 25 26
Configuring SL-100 for MC-X1 Communication Installation TS-i3 Sensors TS-i3 Sensor Orientation CAN Termination Hitch Sensor DogBone Sensor (Optional Mounting Location) Tilt Bucket Sensor Tilt Rotator.	 20 21 22 23 24 25 26 26
Configuring SL-100 for MC-X1 Communication Installation TS-i3 Sensors TS-i3 Sensor Orientation CAN Termination Hitch Sensor DogBone Sensor (Optional Mounting Location) Tilt Bucket Sensor Tilt Rotator Stick Sensor	 20 21 21 22 23 24 25 26 26 27
Configuring SL-100 for MC-X1 Communication Installation TS-i3 Sensors TS-i3 Sensor Orientation CAN Termination Hitch Sensor DogBone Sensor (Optional Mounting Location). Tilt Bucket Sensor Tilt Rotator Stick Sensor Boom Sensor	 20 21 21 22 23 24 25 26 26 27 28
Configuring SL-100 for MC-X1 Communication Installation TS-i3 Sensors TS-i3 Sensor Orientation CAN Termination Hitch Sensor DogBone Sensor (Optional Mounting Location) Tilt Bucket Sensor Tilt Rotator Stick Sensor Secondary Boom Sensor	 20 21 21 22 23 24 25 26 26 27 28 28
Configuring SL-100 for MC-X1 Communication Installation TS-i3 Sensors TS-i3 Sensor Orientation CAN Termination Hitch Sensor DogBone Sensor (Optional Mounting Location). Tilt Bucket Sensor Tilt Rotator Stick Sensor Boom Sensor Secondary Boom Sensor Body Sensor	 20 21 21 22 23 24 25 26 26 27 28 29
Configuring SL-100 for MC-X1 Communication Installation TS-i3 Sensors TS-i3 Sensor Orientation CAN Termination Hitch Sensor. DogBone Sensor (Optional Mounting Location). Tilt Bucket Sensor. Tilt Rotator. Stick Sensor Boom Sensor Secondary Boom Sensor Body Sensor. LS-B10W.	 20 21 21 22 23 24 25 26 26 27 28 29 29
Configuring SL-100 for MC-X1 Communication Installation TS-i3 Sensors TS-i3 Sensor Orientation CAN Termination Hitch Sensor DogBone Sensor (Optional Mounting Location). Tilt Bucket Sensor Tilt Rotator Stick Sensor Boom Sensor Secondary Boom Sensor Body Sensor Body Sensor LS-B10W. MC-X1 Controller	 20 21 21 22 23 24 25 26 26 27 28 29 29 30
Configuring SL-100 for MC-X1 Communication Installation	 20 21 21 22 23 24 25 26 26 27 28 29 29 30 30

WiFi Antenna and	Magnet Mount (If Purchas	sed)	 33
Machine Measureme	ents and Configuration		 34
Taking Machine M	easurements		 34
GR-i3			 34
Body and Boom.			 35
Stick			 35
Hitch			 35
DogBone			 36
Attachments			 36
LS-B10W			 37
Entering Sensor Ir	formation		 38
Audible Guidance			 42
Lightbars			 42
Configuration Com	plete		 43
Calibration			 44
Sensor Filtering .			 44
Body Sensor			 45
Boom Sensor			 47
Secondary Boom S	ensor (Optional)		 48
Stick Sensor			 49
Excavator Hitch .			 50
DogBone Sensor			 50
On Hitch/Couplin	g		 52
Attachment Edge			 53
Multiple Attachme	ents		 54
Tilt Bucket			 55
Tilting Rotating B	ucket		 58
Calibrating the LS	·B10W		 59
Setup Verification			 60
Testing Machine E	lement Sensors for Accura	асу	 60
String Line Verifica	ation		 62
Setup			 62
Test			 63
Troubleshooting .			 64
Hitch Sensor			 64
Stick Sensor			 64
Boom Sensor			 65
LS-B10W Test			 66

Specifications	B
MC-X1	3
Connector Pinouts)
GR-i3)
WiFi Antenna	L
WiFi Antenna Magnet Mount	2
Safety Warnings and Regulatory Information	3
General Warnings	3
RF Radiation Hazard Warning	1
Regulatory Information	1
FCC Statements	ł
IC Statements	ł
Déclaration de conformité IC	-)
Voltage	5
Open Source Support	5

iii

Preface

Thank you for purchasing this Topcon product. The materials available in this Manual (the "Manual") have been prepared by Topcon Positioning Systems, Inc. ("TPS") for owners of Topcon products, and are designed to assist owners with the use of the product and its use is subject to these terms and conditions (the "Terms and Conditions").

NOTICE Please read the terms and conditions carefully.

Terms and Conditions

Use

This product is designed to be used by a professional. The user should have a good knowledge of the safe use of the product and implement the types of safety procedures recommended by the local government protection agency for both private use and commercial job sites.

Copyrights

All information contained in this Manual is the intellectual property of, and copyrighted material of TPS. All rights are reserved. Do not use, access, copy, store, display, create derivative works of, sell, modify, publish, distribute, or allow any third party access to, any graphics, content, information or data in this Manual without TPS' express written consent and may only use such information for the care and operation of the product. The information and data in this Manual are a valuable asset of TPS and are developed by the expenditure of considerable work, time and money, and are the result of original selection, coordination and arrangement by TPS.

Trademarks

X-52[™], X-72[™], X-53[™], X-73[™], MC-X1[™], GX-55[™], GX-75[™], LS-B10W[™], TS-i3[™], TS-i3d[™], GR-i3[™], 3D-MC[™], Topcon®, and Topcon Positioning Systems[™] are trademarks or registered trademarks of TPS. Windows® is a registered trademark of Microsoft Corporation. The Bluetooth® word mark and logos are owned by Bluetooth SIG, Inc. and any use of such marks by Topcon Positioning Systems, Inc. is used under license. Other product and company names mentioned herein may be trademarks of their respective owners.

Disclaimer of Warranty

EXCEPT FOR ANY WARRANTIES IN AN APPENDIX OR A WARRANTY CARD ACCOMPANYING THE PRODUCT, THIS MANUAL AND THE PRODUCT ARE PROVIDED "AS-IS." THERE ARE NO OTHER WARRANTIES. TPS DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR USE OR PURPOSE. TPS AND ITS DISTRIBUTORS SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL ERRORS OR OMISSIONS CONTAINED HEREIN; NOR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM THE FURNISHING, PERFORMANCE OR USE OF THIS MATERIAL OR THE PRODUCT. SUCH DISCLAIMED DAMAGES INCLUDE BUT ARE NOT LIMITED TO LOSS OF TIME, LOSS OR DESTRUCTION OF DATA, LOSS OF PROFIT, SAVINGS OR REVENUE, OR LOSS OF THE PRODUCT'S USE. IN ADDITION TPS IS NOT RESPONSIBLE OR LIABLE FOR DAMAGES OR COSTS INCURRED IN CONNECTION WITH OBTAINING SUBSTITUTE PRODUCTS OR SOFTWARE, CLAIMS BY OTHERS, INCONVENIENCE, OR ANY OTHER COSTS. IN ANY EVENT, TPS SHALL HAVE NO LIABILITY FOR DAMAGES OR OTHERWISE TO YOU OR ANY OTHER PERSON OR ENTITY IN EXCESS OF THE PURCHASE PRICE FOR THE PRODUCT.

License Agreement

Use of any computer programs or software supplied by TPS or downloaded from a TPS website (the "Software") in connection with the product constitutes acceptance of these Terms and Conditions in this Manual and an agreement to abide by these Terms and Conditions. The user is granted a personal, non-exclusive, non-transferable license to use such Software under the terms stated herein and in any case only with a single product

iv

or single computer. You may not assign or transfer the Software or this license without the express written consent of TPS. This license is effective until terminated. You may terminate the license at any time by destroying the Software and Manual. TPS may terminate the license if you fail to comply with any of the Terms or Conditions. You agree to destroy the Software and manual upon termination of the use of the product. All ownership, copyright and other intellectual property rights in and to the Software belong to TPS. If these license terms are not acceptable, return any unused software and manual.

Confidentiality

This Manual, its contents and the Software (collectively, the "Confidential Information") are the confidential and proprietary information of TPS. You agree to treat TPS' Confidential Information with a degree of care no less stringent that the degree of care you would use in safeguarding your own most valuable trade secrets. Nothing in this paragraph shall restrict you from disclosing Confidential Information to your employees as may be necessary or appropriate to operate or care for the product. Such employees must also keep the Confidentiality Information confidential. In the event you become legally compelled to disclose any of the Confidential Information, you shall give TPS immediate notice so that it may seek a protective order or other appropriate remedy.

Website; Other Statements

No statement contained at the TPS website (or any other website) or in any other advertisements or TPS literature or made by an employee or independent contractor of TPS modifies these Terms and Conditions (including the Software license, warranty and limitation of liability).

Safety

Improper use of the product can lead to injury to persons or property and/or malfunction of the product. The product should only be repaired by authorized TPS warranty service centers. Users should review and heed the safety warnings in an Appendix.

Miscellaneous

The above Terms and Conditions may be amended, modified, superseded, or canceled, at any time by TPS. The above Terms and Conditions will be governed by, and construed in accordance with, the laws of the State of California, without reference to conflict of laws.

Manual Conventions

This manual uses the following conventions:

Convention	Description	Example
Bold	Menu, or drop-down menu selection	File > Exit (Click the File menu and click Exit)
	Name of a dialog box or screen	From the Connection screen
	Button or key commands	Click Finish .
Mono	User supplied text or variable	Type guest, and click Enter.
Italic	Reference to another manual or help document	Refer to the Topcon Reference Manual.

Further information to note about system configuration, maintenance, or setup.

Supplementary information that can have an adverse affect on system operation, system performance, data integrity, or measurements.

Notification that an action has the potential to result in minor personal injury, system damage, loss of data, or loss of warranty.

Notification that an action has the potential to result in personal injury or property damage.

DANGER Notification that an action has the potential to result in severe personal injury or death.

vi

This manual discusses how to install and calibrate Topcon's Indicate Excavator Systems utilizing the MC-X1 Controller.

The TS-i3 single and dual axis sensors used in the Topcon excavator systems measure the pitch and roll angle of various machine elements. Each sensor accurately measures a gravity-referenced angle of the body, boom, stick, and attachment, sending this angle data to a GX-55/GX-75 (GX Series) display to provide precise grade. Each sensor is configured and calibrated for its specific location on the excavator. The dual axis body sensor functionality is unique as it measures both pitch and roll (cross slope) of the machine.

Indicate System Components

Table 1 lists the hardware and software components of the indicate systems.

The MC-X1 System Architecture requires all of the sensors to be running on a 500kbps Baud Rate. Legacy sensors used in MC-R3, MC-i3, and MC-i4 systems are not compatible with the MC-X1 excavator system. Ensure that the sensors to be used in the MC-X1 system have the correct part number and label denoting the 500kbps Baud Rate.

Hardware	Software/Firmware
MC-X1 Controller	3D-MC V12.2.307 or later
GX-55/GX-75 Display (GX Series)	MCXCONFIG (MC-X Machine Control Gateway)
TS-i3 Tilt Sensors (500kbps Baud Rate)	MC-MCX 6.01 or later
LS-B10W Laser Receiver (500kbps Baud Rate)	Topcon Receiver Utility (TRU) 3.2 or later
EASy-Proof Radio Module (3D Only)	
GR-i3 GNSS Antenna with Vibration Mount (3D Only)	
Optional	Optional
SL-100	SL-100 Firmware 1.15 or later
WiFi Antenna (OMNI 2.4-2.5 GHz)	
WiFi Antenna Magnet Mount (0-6 GHz)	

Table 1.	2D ar	nd 3D	Excavator	Indicate	System	Components
					_	

The TS-i3 Tilt Sensors, the MC-X1 Controller, the GX Series display, and the LS-B10W Laser Receiver make up the 2D indicate system. The LS-B10W adds a laser height reference, and is calibrated for its location on the stick of the excavator. The 3D system (Figure 1) utilizes two GR-i3 GNSS Antenna and a radio module for precise 3D control.

Figure 1: Machine Components

When installing components, use the Topcon supplied fuse or fused power from the machine of the same rating.
System ground must be connected to the frame side of the ground
disconnect switch, not directly to the negative battery terminal.

Sitting in the cab facing forward, the sensor angles are 0° straight ahead (horizontal), +90° straight up, and -90° directly down (Figure 2).

Figure 2: Angle Convention Used For Tilt Sensors

The Main and Auxiliary (Aux) antennas provide positional and heading information.

- Main antenna determines 3D machine position.
- Aux antenna determines heading using relative position.

Using TS-i3 sensors, the 3D position of the bucket is projected from the Main antenna.

Figure 3: Tilt Sensor Positional and Heading References

2D System Configuration

Figure 4 shows the basic cabling connections for the 2D excavator indicate system.

Figure 4: Basic Cable Connections - 2D Excavator Indicate System

3D System Configuration

Figure 5 shows the basic cabling connections for the 3D excavator indicate system with SL-100.

Figure 5: Basic Cable Connections - SL-100 3D Excavator Indicate System

3D configurations may also include the LS-B10W laser receiver. See Figure 4 on page 4.

NOTE

4

MC-X1 Connectivity and Configuration

Configuration of the unit can be done using a GX Series display while connected in the machine, or with a computer using the following programing cable:

• MC-X1 Program Cable

Connecting to the MC-X Web Interface from a PC

- 1. Open the web browser on the display or your computer.
- 2. Type 192.168.0.1 into the address bar to connect to the web interface of the MC-X1 (Figure 6).

Figure 6. Access Topcon Sitelink3D Gateway Web Interface

When prompted for the user name and password, enter admin for both (Figure 7).

The server 192 username ar	168.0.1 at Topcon ad password.	SiteLINK 3D G	ateway requir	es
	admin Remember my	/ credentials		
			ок	Cancel

Figure 7. Enter Sitelink3D User Name and Password

Connecting to the MC-X Web Interface via MCXCONFIG

MCXCONFIG is also know as the MC-X Machine Control Gateway.

- 1. Download the MCXCONFIG installer file from myTopcon (https://www.topconpositioning.com/support).
- 2. Double-tap on the **MCXCONFIG** program icon on the desktop of the GX Series display to open the web interface.
- 3. When prompted for the user name and password, enter admin for both.

Viewing General Information and Firmware

From the left menu on the screen, click **Settings** ▶ **General.** The device information is listed in the **General Device Configuration** screen (Figure 8).

	X trol Gateway		
Sensors	General Device Configuration	'n	
Network	Configuration Status		
Ethernet 1			
OpenVPN	Serial Number	3581E40EB361	
Sitelink3D	Device Name	mcx1	
Port Forwarding	Language	English V	
NTP	Lunguuge		
Settings		Save	
General	1		
Firmware			
Reboot			
Advanced			

Figure 8. General Device Information

Upgrading MC-X1 Firmware

- 1. To upgrade MC-X1 firmware, click **Settings Firmware**.
- 2. Click the **Choose File** button. Windows[®] Explorer appears.
- 3. Locate and select the appropriate controller firmware for the MC-X1.
- 4. Click Load Firmware to begin.

		л
Sensors	Firmware	
Network	Load Status	
Ethernet 1		
OpenVPN	Firmware Version(s)	
Sitelink3D	mr 6 00 2017 06 00711:01:00 0hfre3h	
Port Forwarding	WE 5.65 201-50-63111.01.33 801(C20	
NTP	Load Firmware Choose File No file chosen	
Settings	Load Firmware	
General		
Firmware		
Reboot		
Advanced		

Figure 9. Load Firmware - Choose File

CAUTION Do not close the web browser or power off the system during the firmware upload process.

- 5. Once firmware loading is complete, a reboot prompt appears.
- 6. Click **Reboot**.

	itrol Gateway	6-	影	_]	en e	J	
Sensors	Reboot						
Network	Reboot			Reboot			
Ethernet 1				here being and the part of the			
OpenVPN							
Sitelink3D							
Port Forwarding							
NTP							
Settings							
General							
Firmware							
Reboot							
Advanced							

Figure 10. Reboot

Resetting the MC-X1

If the MC-X1 settings are in an unknown state, all the settings can be reset, which will remove most settings, including any user defined settings. This step is recommended if the history of the unit is unknown, or if it has been upgraded from any early beta version of the MC-X1 firmware.

- 1. From the menus on the left of the screen, click **Settings** > **Advanced**, and then click the **Administration** tab.
- 2. In Erase persistent data row, select Application from the drop-down list.
- 3. Click **Erase**.

Sensors	Advanced Configuration Options
Network	Administration Descended Conferences Contaction
Ethernet 1	Administration Passwords Configuration System Log
OpenVPN	Enable Remote SEH
Sitelink3D	
Port Forwarding	Enable Console
NTP	Enable persistent System Log
Settings	Save
General	Erase Application
Firmware	All (requires reboot)
Reboot	

Figure 11. Firmware

4. Locate and click the **Reboot** shortcut link at the top of the screen, or click **Settings** → **Reboot** on the left side of the screen.

Assigning GR-i3 Vibration Mount to Auxiliary

The Main GR-i3 Vibration Mount must be disconnected from the system in order to assign an Auxiliary (AUX) antenna.

If **Left Pole**, **Right Pole**, **GRi3**, or **AuxGRi3** do not populate in the MC-X Machine Control Gateway **Sensors** menu, 3DMC must deploy a machine file with MC-X1 as Position input.

- 1. Open 3D-MC to create a machine builder file (if one has not already been created), and select **MC-X1** from the **Position input** drop-down menu. If a machine builder has already been configured, make sure MC-X1 is selected as the Position Input.
- 2. Navigate to the end of the machine builder, and tap **Finish**.
- 3. Ensure the correct machine file is selected on the **Machine files** page, and tap **OK**. Now, your .mx3 is deployed, and the necessary sensors will populate in the MC-X Machine Control Gateway **Sensors** menu.

An .mx3 file that is active in 3D-MC is considered the "deployment".

- 4. Open MCXCONFIG.
- 5. Disconnect the CAN cable from the bottom of the Main GR-i3 Vibration Mount on the Left side of the machine.
- 6. From the menus on the left of the screen, click **Sensors > Left_pole**, and then click the **Config** tab..

Sensors	Configu	re Left_pole		
HD2				
LocaSzation	Config	Status		
CANOpen Bus	8-1-10			
J1939 Bus	Pole ID :		Left 🔻 Save	
UHF Radio				
Body				
Gri3				
Attachment				
Boom				
Lsb10w				
Rototilt				
Stick				
AuxGri3				
Can_bm				
Deployment				
Left_pole				
Right pole				

Figure 12. Settings - Left Pole - Config Tab

7. Select **Right** from the drop-down menu (Figure 13).

8

8. Tap **Save**. The GR-i3 Vibration Mount is set to AUX.

lonsors	Configur	e Left_pole			
HD2	Confin	Status			
Localization	comy	Status			
CANOpen Bus	Pole ID :		[VIS	- 1000 F	
J1939 Bus	1		Left •	Save	
UHF Radio		23	Left		
Body		2	Right		
Gn3			A DECEMBER OF		
Attachment					
Boom					
Lsb10w					
Rotoblt					
Stick					
AuxGri3					
Can_bm					
Deployment					
Left pole					
Hard Store					

Figure 13. Right

9. Reconnect the CAN cable to the main GR-i3 Vibration Mount on the Left side of the machine.

The GR-i3 units are not assigned Main or AUX. Only a Vibration Mount may be assigned to be AUX. The GR-i3s remain interchangeable.

Loading GR-i3 Firmware

1. Select the **GR-i3** menu under **Sensors**.

ensors	Configur	e Gri3				
HD2						
ocalization	Config	Commands	Status	OneWire	Firmware Upgrade	GNSS Firmware Upgrade
ANOpen Bus						
1939 Bus	Reset On	Error			2	
HF Radio					Save	
ody	N 100 88					
irl3	Enable Te	ermination				
ttachment	_				Save	
moo						
sb10w						
ototilt						
tick						
uxGri3						
an_bm						
ployment						
ft_pole						
Night mole						

9

2. Select the **Firmware Upgrade** tab.

iensors	Configu	re Gri3				
HD2	Confle	Commande	Chabur	OneWire	Firmuna Unavada	ONCE Elemente llagrade
Localization	coning	commanus	Status	Unewrite	Fil inware opgrade	GNSS FILINWALE OPGIAUG
ANOpen Bus	Choose	Ella Na fila chas				
39 Bus	Choose	The no nie chos	en.			
Radio	Upgrade					
6						
chment						
m						
10w						
otilt						
¢.						
Gri3						
bm						
ovment						
pcie						
242403 201100				_		

Figure 15. Firmware Upgrade

- 3. Select **Choose File** (Figure 16) and navigate to the GR-i3 firmware file (.bin extension).
- 4. Choose **Upgrade** and the firmware upgrade process should begin (Figure 16).

MC- Machine Cor	
Sensors	Configure Gri3
HD2	
Localization	Config Commands Status OneWire Firmware Upgrade GNSS Firmware Upgrade
CANOpen Bus	
J1939 Bus	Choose File GRi3_GRi3F-V2.40.bin
UHF Radio	Upgrade
Body	
Gri3	
Attachment	
Boom	
Lsb10w	
Rototilt	
Stick	
AuxGri3	Figure 16. Choose File

A notification appears once the upgrade process is complete (Figure 17).

Firmware Machine Cor	pgrade successful. if device not working properly, please restart the device
Sensors	Configure Gri3
HD2	
Localization	Firmware Upgrade
CANOpen Bus	
J1939 Bus	
UHF Radio	
Body	dope 679016 / 679016
Gri3	when a paral a para
Attachment	
Boom	
Lsb10w	
Rototilt	
Stick	
AuxGri3	
Can_bm	
Deployment	
Left pole	

Figure 17. Firmware Upgrade Successful

5. Select **AuxGRi3** under the **Sensors** tab, and repeat steps 2 through 4 for the Auxiliary antenna.

Loading GNSS Firmware

1. Select the **GR-i3** menu under **Sensors.**

nsors	Configu	re Gri3				
D2						
ocalization	Config	Commands	Status	OneWire	Firmware Upgrade	GNSS Firmware Upgrade
ANOpen Bus	-					
1939 Bus	Reset Or	n Error				
HF Radio					Save	
13	100 100 14					
010w	Enable T	ermination				
totilt					Save	
n_bm					(CONTRACTOR)	
(Gri3						
t_pole						
ght_pole						
work						
nemet 1						
nVPN						
alink3D						

2. Select the **GNSS Firmware Upgrade** tab.

ensors	Configur	e Gri3				
HD2					16	r
ocalization	Config	Commands	Status	OneWire	Firmware Upgrade	GNSS Firmware Upgrade
NOpen Bus		and the second		1		
9 Bus	Choose F	tam File(*.LDR):		Choose	File No file chosen	
Radio	Choose F	lash File(*.LDP):		Choose	File No file chosen	
				Unional	1	
Ow				Upgrade	1	
ült						
bm						
ini3						
pole						
nt_pole						
ork						
met 1						
VPN						

- 3. To choose the RAM file, select Choose File and navigate to the GR-i3 firmware file (.ldr extension).
- 4. To choose the Flash file, select **Choose File** and navigate to the GR-i3 firmware file (.ldp extension).

ensors	Configure	Gri3				
HD2						C
Localization	Config	Commands	Status	OneWire	Firmware Upgrade	GNSS Firmware Upgrade
CANOpen Bus		1950 - 1970 - 1970 - 1980				
J1939 Bus	Choose Ra	m File(*.LDR):		Choose	File ramimage.ldr	
UHF Radio	Choose Fla	Choose Flash File(*.LDP):			File main.ldp	
Gri3				Descoveda		
Lsb10w				Upgrade		
Rototiit						
Can_bm						
AuxGri3						
Left_pole						
Right_pole						
etwork						
Ethemet 1						
OpenVPN						

5. Choose **Upgrade** and the firmware upgrade process should begin. A notification appears once the upgrade process is complete.

Sensors	Configur	e Gri3				
HD2						C
Localization	Config	Commands	Status	OneWire	Firmware Upgrade	GNSS Firmware Upgrade
CANOpen Bus				-		
J1939 Bus	Choose R	lam File(*.LDR):		Choose	File ramimage.ldr	
UHF Radio	Choose F	lash File(*.LDP):		Choose	File main.ldp	
Gri3				Unanada		
Lsb10w				Opgrade		
Rototilt						
Can_bm						
AuxGri3						
Left_pole						
Right_pole						
etwork						
Ethernet 1						
OpenVPN						

6. Select AuxGRi3 under the Sensors tab, and repeat steps 2 through 5 for the Auxiliary antenna.

System Verification

Now that all necessary firmware has been loaded onto the MC-X1, CAN communication can be verified.

1. Ensure all sensors and GR-i3s are connected, then tap on **CANOpen Bus**.

MC=X Machine Contr	
Sensors	General Device Configuration
HD2	
Localization	Configuration Status
CANOpen Bus	21 de la constance
J1939 Bus	Serial Number 98815E165471
UHF Radio	Device Name mcx1
Gri3	English T
Lsb10w	
Rototilt	Save
Can_bm	
AuxGri3	
Deployment	
Left_pole	
Right_pole	
Network	
Sitelink3D Gateway	
Ethernet 1	

Figure 22. CANOpen Bus

2. All communicating devices will populate in the **Status** window (Figure 23).

CANOpen Bus

Status					
Node ID	Туре	Product	Revision	Serial #	
54	tsi3	1413697358	66816	2630254	
65	tsi3	1413697358	66816	2381965	
73	tsi3	1413697358	66816	2381973	
88	tsi3d	1413697358	66816	2093988	
116	gri3	1735551283	65536	0	
120	gri3	1735551283	65536	0	

Figure 23. CANOpen Bus - Communicating Devices Status

Once a machine builder has been made active with the correct sensor designations (see "Calibration" on page 44), the Body, Boom, Stick, and Attachment will be selectable in the **Sensors** menu as shown in Figure 24 on page 14.

Sensors	General Device Configura	ation
HD2		
Localization	Configuration Status	
CANOpen Bus		
J1939 Bus	Serial Number	98815E165471
UHF Radio	Device Name	mcx1
Body	Language	English V
Gri3	Language	
Attachment		Save
Boom		
Lsb10w		
Rototilt		
Stick		
AuxGri3		
Can_bm		
Deployment		
Left_pole		
Right_pole		
letwork		
Sitelink3D Gateway		
Sitelink3D Gateway Ethernet 1		
Sitelink3D Gateway Ethernet 1 OpenVPN		
Sitelink3D Gateway Ethemet 1 OpenVPN Sitelink3D		
Sitelink3D Gateway Ethemet 1 OpenVPN Sitelink3D Port Forwarding		
Sitelink3D Gateway Ethernet 1 OpenVPN Sitelink3D Port Forwarding Access Point		
Sitelink3D Gateway Ethernet 1 OpenVPN Sitelink3D Port Forwarding Access Point WLAN		
Sitelink3D Gateway Ethernet 1 OpenVPN Sitelink3D Port Forwarding Access Point WLAN NTP Server		

Loading EASy-Proof Radio Channels

1. Open 3D-MC to create a machine builder file (if one has not already been created), and select **Satel EASy-Proof** from the radio drop-down menu. If a machine builder has already been configured, make sure **Satel EASy-Proof** is selected as the radio type.

GNSS Radio Setup				
Radio type:	Topcon Digital 2 (UHF)			
Port:	Airlink modem (GPRS) ^ Airlink modem (CDMA)			
Baud rate:	Generic GSM modem (GSM			
Format:	Site-Link Serial Site-Link Direct Direct Network Connectior			
	MC-i4 Internal (FH915)			
	SATEL EASy-Proof			
Configure.	MC-i4 Internal (UHF)			

Figure 25. UHF Radio Setup

- 2. Navigate to the end of the machine builder, and tap **Finish**.
- 3. Ensure the correct machine file is selected on the **Machine files** page, and Tap **OK**. Now, your .mx3 is deployed, and the radio will populate in the MC-X Machine Control Gateway.

An .mx3 file that is active in 3D-MC is considered the "deployment".

- 4. UHF RADIO will not populate in the MC-X Web Interface unless an .mx3 file with the **Satel EASy-Proof** radio type is deployed from 3D-MC.
- 5. Open MCXCONFIG, and select UHF Radio under Sensors.

MC- Machine Con	Kol Gateway			# τορςοη
Sensors	Configure UHF Radio	1		
HD2				
Localization	Config Status Cha	innels		
CANOpen Bus	Presets			
J1939 Bus	Channel #	Frequency (MHz)	Spacing (KHz)	
UHF Radio	- 1	461 0250	125 🗙	Save Cancel
Body	1	401.0200		ouve curren
Gri3	2	464.5	12.5 🔻	Add Row
Attachment				
Boom				
Lsb10w				
Rototilt				

MC-X1 Connectivity and Configuration

6. Tap the **Channels** tab, enter the appropriate values, and tap **Save**.

	itrol Gateway			Н ТОРСОГ
Sensors	Configure UHF Radio			
HD2				
Localization	Config Status Chan	nels		
CANOpen Bus	Presets			
J1939 Bus	Channel #	Frequency (MHz)	Spacing (KHz)	
UHF Radio		461 0050	125-	C
Body	1	461.0250	12.5 *	Save Cancel
Gri3	2	464.5	12.5 🔻	Add Row
Attachment				
Boom				

Figure 27. UHF Radio Setup

A notification appears when the values are saved (Figure 28).

Machine Cor	ntrol Gatew	ay				50	ΤΟΡΟΟΓ
Sensors	Configu	re UHF R	adio				
HD2				N			
Localization	Config	Status	Channels				
CANOpen Bus	Procet	-					
J1939 Bus	Channe	- #		Frequency (MHz)	Spacing (KHz)		
UHF Radio	endine			requerey (rinz)	opuoling (mill)	- Ferrererer	Concentration
Body	2			464.5	12.5	Edit	Delete
						- procession	· ····································

Figure 28. UHF Radio Setup - Saved

- 7. Close MCXCONFIG.
- 8. Open **3D-MC**, and tap **Tools > Configure Radios > Configure**, and then select the appropriate channel from the drop-down menu.
- 9. Tap **Set**.

ИН	F Radio Configuration	ин	F Radio Configuration	
Channel	CH 3 (461.025MHz@12.5) 💌	Channel	CH 3 (461.025MHz@12.5)	•
Protocol	CH 2 (464.5MHz@12.5)	Protocol	PDL-4FSK	-
FEC	<u>CH 3 (461.025MHz@12.5)</u>	FEC	ON	-
Scrambler	ON 🔽	Scrambler	ON	
	Set Cancel		Set Cance	1

Figure 29. UHF Radio Configuration

Factory Reset for the GR-i3 via TRU

A Factory Reset resets all the receiver parameters to their default values and clears the receiver's Non-Volatile Random Access Memory (NVRAM). NVRAM holds data required for satellite tracking. Factory Reset does not delete any files from the receiver and does not reset modem parameters.

Perform a Factory Reset after loading a new GNSS firmware file and sometimes to eliminate communication or tracking problems. After performing the procedure, the receiver requires some time to collect new ephemerids and almanacs (up to 15 minutes)

To perform a Factory Reset using Topcon Receiver Utility (TRU):

- 1. Open **TRU** from the desktop of the GX Series display.
- 2. Tap **Device > Application Mode > Receiver Managing**.

w Topcon Receive	er Utility			? _ 🗆 X
Device View Help Connect F11 Disconnect F12 Setup			Pessiver	Status
Application Mode	Simple <u>Terminal</u> Receiver Managing <u>Modem Managing</u> <u>Firmware Loading</u>	F2 F3 F4 F5	Receiver Settings	Status
File Explorer Mode Drive	m Pr			
🚸 Receiver Managin	g			<u></u>

Figure 30. TRU - Receiver Managing

3. Tap **Device > Connect**.

evice view help			
ConnectF11DisconnectF12		-	
Setup Option Application Mode	ns Tools	Receiver Settings	
Status File Explorer Mode Drive	m ŧr		

Figure 31. TRU - Connect

- 4. In the **Connection Parameters** screen, select **Network** from the **Connect Using** drop-down list.
- 5. In the **Device Name** field, tap to select the device name to which the GPS receiver board is connected.
 - a. If a Device name has not been configured, tap Then press and hold on the white area of the screen.
 - b. Select Add. The Network Connection screen appears.
 - c. Enter a Name to identify the Main GNSS board

TE MC-i3, MC-i4, and the GR-i3 utilize the same network parameters for Main and AUX GNSS boards.

- d. Enter the following network parameters for the GR-i3 Main GPS board:
 - IP Address or Host Name: 192.168.0.1
 - TCP Port: 8012
 - Password: TPS
- e. Tap **Ok**.

6. After resetting the Main GNSS board, repeat steps 3 to 5e for the Auxiliary GNSS board.

The TCP Port for the Auxiliary GNSS board is 8013.

🕮 Network Connection ? ок _	
Friendly Name	
MC-i3 / MC-i4 / GR-i3 MAIN	INetwork Connection
IP Address or Host Name	Friendly Name MC-i3 / MC-i4 / GR-i3 AUX
3	IP Address or Host Name
TCP Port Password 8012 TPS	192.168.0.1
	TCP Port Password 8013 TPS

Figure 32. TRU - Network Parameters

- 7. Tap Connect.
- 8. Tap the **Tools** icon
- 9. Select Factory Reset.
- 10. A popup message appears. Tap **OK**.
- 11. After both GNSS boards have been reset, close **TRU**.

Configuring SL-100 for MC-X1 Communication

The following section explains how to configure the optional SL-100 for communication with the MC-X1.

To communicate with the MC-X1, SL-100 Firmware 1.15 must be installed on the SL-100. Refer to the *SL-100 Configuration Manual* P/N: 1000226-01 to load the firmware.

Firmware cannot be loaded while the SL-100 is connected to the MC-X1. SL-100 programming cables are necessary.

Once the SL-100 is connected, the **Sitelink3D Gateway** is accessible under **Network**.

Network	General Device Co	figuration	
Ethernet 1	Configuration Stat		
OpenVPN	Configuration State		
Port Forwarding	Serial Number	000000B8F3E3	
Cellular	Device Name	slr4-F005615170168	
NTP Server	Language		
DNS Server	Language		
Settings		Save	
General			
Firmware			
Reboot			
Advanced			

To return to the MC-X Machine Control Gateway, click **Back**.

Installation

TS-i3 Sensors

NOTICE

Before installation, note the following:

- Check the sensor's serial numbers before installing. The last two digits of the serial number determine the sensor CAN address, and must be unique to each machine.
- A sensor ending in 00 is considered a special CAN identifier, and will be identified as 01 in 3D-MC; therefore; if you have a sensor with 00 and a sensor with 01, there will be some confusion in 3D-MC.For example, sensor serial number 0302 and 0402 will have the same CAN address ("02"), causing communication errors.

When mounting the tilt sensors, begin with the attachment to help simplify cable routing.

Each TS-i3 sensor contains a single or dual axis sensor element. The sensor's mounting location determines the sensor type; single axis or dual axis. Single axis sensors mount on the stick, boom, and attachment, in a left or right orientation. The body sensor is dual axis, and mounts only in a flat orientation with the label up.

The dual axis TS-i3 sensor is labeled "TS-i3d".

When installing the sensors, ensure that they are mounted parallel to the axis being measured. Locate surfaces that protect the sensor from physical damage and are convenient for cable routing. When the position of the implement is at zero degrees (horizontal), make a note of the direction of the arrow marker on the serial label (located on the top of the sensor). This direction is needed during calibration. The calibration process uses 3D-MC to enter direction, orientation, and other sensor variables.

TS-i3 Sensor Orientation

Figure 34: TS-i3 Sensor Location and Direction

Mounting each tilt sensor within +/- 20° of the pivot centerline is a good practice. Though not necessary for system performance, squaring the sensors to each part of the machine makes for a cleaner looking installation.
All tilt sensor orientation is determined when the implement is horizontal (zero degrees). The orientation of each tilt sensor is entered in 3D-MC.
It is recommended that the sensors be installed on the boom, stick and attachment implements with serial numbers in ascending or descending order.
When entering sensor information, make note of each sensor's serial number and its orientation. TS-i3 sensor orientation for boom, stick, and hitch is only left or right.

CAN Termination

To ensure proper communication on the CAN bus, the last sensor physically connected must use the hard terminator provided with the excavator systems. Typically, the hard terminator connects to the hitch sensor or the tilt bucket sensor as shown in Figure 35.

Figure 35: Hard Terminator on Last TS-i3 Sensor

On a 2D system, the hard terminator must also connect to the F-M-M Tee (Figure 36).

Figure 36: Hard Terminator on F-M-M Tee - 2D System

On a 3D system, the hard terminator must also connect to the M-M-M Tee at the last GR-i3 (usually the AUX), as shown in Figure 37,

Figure 37: Hard Terminator M-M-M Tee - 3D System

Hitch Sensor

The hitch sensor is the most challenging sensor to mount to keep the sensor and cables protected.

If a quick release coupler is installed on the excavator, the most accurate and safe place to mount the sensor is on the inside of the coupler.

An alternative mounting location is on the left side of the DogBone, either on the inside or the outside of the DogBone itself; see "DogBone Sensor (Optional Mounting Location)" on page 25.

If no hitch sensor is used select None (hanging attachment).

CAUTION TS-i3 sensors are only mounted on the left or right of the DogBone or quick-release.

When mounting the attachment sensor, keep the following in mind (Figure 38):

- Position the hitch on the ground (bucket flat on the ground) before mounting the sensor.
- Mount the sensor between the attachment pivot pin and the linkage pin as shown in Figure 38.
- Sensor is orientation Left/Right.

Figure 38: Quick-release and Attachment Sensor Mounting

DogBone Sensor (Optional Mounting Location)

An optional location for the hitch sensor is on the DogBone. This location offers additional protection of the sensor, but produces less accurate readings (especially if the joints are worn). If possible, placing the sensor on the inside of the DogBone will provide additional protection. Mounting the sensor on the DogBone requires additional calibration steps.

Installing the sensor on the inside of the DogBone may not be possible on smaller machines due to space constrictions.

CAUTION If using the DogBone mounting option, worn joints in the DogBone linkage causes decreased accuracy.

CAUTION TS-i3 sensors are only mounted on the left or right of the DogBone.

The recommended location of the sensor is on the left side of the DogBone.

Figure 39: DogBone Sensor Mounting Example

Tilt Bucket Sensor

If using tilt bucket, an additional sensor may be mounted to the bucket (Figure 40). Tilt bucket sensor mounting differs from all other sensors. Determine the location and orientation of the sensor with the bucket sitting flat on the ground.

If using a single-axis TS-i3 sensor, mount the sensor vertically, with the label front/arrow right, or label back/arrow right from the cab perspective.
If using a dual-axis TS-i3d sensor, mount the sensor with a flat orientation, on a the top of the attachment with the label up. The arrow may point left, right, forward, or back.

Figure 40: Tilt Bucket Sensor Mounting

Tilt Rotator

The following brands of supported Tilting/Rotating attachments include;

- Rototilt $^{\mathbb{R}}$
- Engcon[®]
- Steelwrist[®]

Each manufacturer has specific installation documentation which is required for setup and calibration.

Stick Sensor

Locate a convenient surface to mount the sensor. Mounting the sensor close to the top of the stick will help prevent damage during digging.

The mounting location shall be on the left or right side of the stick (from the cab point of view).

Figure 41: TS-i3 Stick Sensor Mounting

Boom Sensor

For the boom sensor, locate a convenient surface parallel to the boom center. The mounting location may be on the left or right side of the boom (from the cab point of view). Be sure to place the sensor at a location away from the boom pivot

CAUTION Placing the boom sensor on a tapered section will cause calculation errors.

Figure 42: Boom Sensor Mounting

Secondary Boom Sensor

The secondary boom sensor mounting locations are identical to the primary boom sensor mounting locations. If a second boom is installed, see the previous section "Boom Sensor" on page 28.
Body Sensor

For the TS-i3d dual axis body sensor, locate a convenient surface where the sensor can be mounted with the label up.

The recommended mounting location is between the boom's elevation cylinders (Figure 43).

If a secure mounting surface cannot be between the boom's elevation cylinders, mount the body sensor to the alternative mounting location on top of the body, or under the boom pivot pin.

Figure 43: Body Sensor Mounting - Top View

LS-B10W

The LS-B10W Laser Receiver and bracket must be mounted on the left side of the stick. The following section describes bracket mounting, cable routing, and LS-B10W Laser Receiver mounting.

CAUTION A mark on the laser receiver and the cross hairs on the mounting bracket are used to determine its position on the stick.

1. Before installing the LS-B10W bracket, you must assemble the bracket kit; see the *LS-B10W Indexing Bracket Assembly Instructions* (p/n: 7030-1370) for more information.

2. Install the LS-B10W onto the bracket.

3. Route the cables as shown in Figure 44.

Figure 44: LS-B10W Cable Routing

MC-X1 Controller

Install the MC-X1 Controller onto the machine's body using the magnet mounts provided, and connect the cable to the GX Series Display.

GNSS Antenna, Mount and Pole

1. Weld the Antenna Pole Weld Mount to the top of the counterweight as shown in Figure 45.

	Various makes and models may require fabrication of mounting surface for the Antenna Pole Mount. Ensure that the top of the antenna is flush or slightly above the cab roof when mounted.
--	---

Figure 45: Antenna Pole Mount Weld Mount Locations

- 2. Repeat Step 1 on the opposite side of the excavator.
- 3. Install the two antenna poles onto the weld mount using the three (3) bolts as shown in Figure 46.

- 4. Install the strain relief brackets. Remove the two (2) small bolts to route the TURK CAN cable
- through the bracket. Ensure enough cable is routed through, so that the cable can be threaded into the GR-i3 BASE (Figure 48 on page 33).

Figure 47: Strain Relief

5. Install the GNSS antenna, align the strain relief bracket, and connect the cable (Figure 48 on page 33).

Figure 48: GNSS Antenna Installed on Pole

WiFi Antenna and Magnet Mount (If Purchased)

- 1. Install the WiFi Antenna Magnet Mount onto the machine's cab.
- 2. Install the WiFi Antenna onto the Magnet Mount.
- 3. Connect the WiFi Antenna cable to the MC-X1.

Taking Machine Measurements

T

Accurately measure and enter the machine dimensions into the 3D-MC machine builder, and write your measurements on the lines at the side of the following screen captures.

CAUTION Incorrect measurements or data entry errors have a direct affect on excavating accuracy. Take each measurement twice to ensure accuracy.

Body and Boom

Stick

I

Hitch

The Hitch Sensor may be mounted on the Dogbone or the Hitch/Coupling.

Hanging Attachment may be selected if there is no sensor.

Excavator Hitch			
Angle sensor:	,	•	Mounting Location
Sensor ID	@		Hitch Sensor ID
í	Back Nevt	Cancel	

Machine Measurements and Configuration

DogBone

1

L

Т

I

L

L

I

L

I

Т

Т

L

L

L

ሔ

DogBone Lengths

Excav	ator Hitch	_	
Angle sensor: On do	ogbone		
Sensor ID	2		Hitch Sensor ID
	Len (1)	0.00'	
4.	Len (2)	0.00'	1
8.	L∈n (3)	0.00'	1
	Len (4)	0.00'	1
	Diff:		Note: Stick angle difference (Diff:) is
Ba	ick Next	Cancel	determined during calibration of the machine.

Attachments

Attachment Width and Length (repeated for each bucket)

Note: Multiple attachments may be set up at any time. When ready for use, ensure that the desired attachment is calibrated (see pg. 35).

Record Sensor ID and orientation for all sensors.

Note: **Length 3** is the length from the attachment pivot pin perpendicular to the tilt pivot pin. If this measurement is incorrect, the accuracy of the attachment will be degraded as it is tilted.

Excavato	or Attachment Setup	
Name :		
Гурє:	Standard bucket	•
	Width (1) Len (2)	
	Next Cano	cel

Excava	tor Attachment Setu	P	
Name :			
Турє:	Tilting bucket		
💛 в.)	Width (1)		
	Len (2)		
	2. Len (3)		
10000	Sensor ID	- 55	
<u> </u>		×	Sensor ID
	Next	Cancel	& Orientation

Attachment Setup Bucket Rotator

Excavato	r Attachment Setup	
Name :		
Турє:	Tilting/rotating bucket	-
	Width (1)	
	Len (2)	
	Len (3)	
and the second second	Sensor ID	
		Sensor ID
	Next Cane	cel

Attachment Setup Clamshell Bucket

I

L

Excavat	tor Attachment Setup		
Name :			
Турє:	Clamshell bucket	•	
	Width (1)		
	Finish Ca	ncel	

Attachment Setup Trapezoidal Bucket

Excavato	or Attachment Setup	
Name :		
Турє:	Trapezoidal bucket	•
	Width (1) Len (2) Angle (3)	
	Next Canc	el

Attachment Setup Grinding Wheel

Excavato	or Attachment Setup	
Name :		
Турє:	Grinding Wheel	•
	Width (1) Len (2) Len (3)	
•.T	Next Cance	E

LS-B10W

Entering Sensor Information

Power up the system and allow several minutes for the 3D-MC software to detect the sensors.

Before calibrating the sensors on the excavator systems, set up each sensor in 3D-MC. You will need the following information:

- · the last two digits of the sensor's serial number
- the physical orientation of the sensor mounting

Step 1: Configure the Machine File and the excavator options.

- 1. In the GX Series display, tap the **Power Button > Control > Machine setup**.
- 2. Select a current machine file and tap **Edit**, or tap **New** to create a new machine file.
- 3. On the **Configuration name/type** screen, enter or select the appropriate data as needed (Figure 49).

Configuration name/type		Configuration name/type	
Configuration name:		Configuration name: MC-X Excavator	
Machine type:	Excavator _	Machine type:	Excavator
Sensor type:	GN55 -	Sensor type:	GNSS & 2D
Mounting location:	Machine body -	Mounting location:	GNSS LPS
Units of measure:	Feet	Units of measure:	2D GNSS & 2D
	Next Cancel		Next Cancel

Figure 49: Configuration name/type

- 4. Tap **Next** to navigate to the **Excavator Options** screen and select **None** as the **Position Input** (Figure 50 on page 39).
- 5. Enter 3D/2D excavator options:
 - a. For 3D systems, choose MC-X1 for Position Input and Sensor Input.
 - b. For 2D systems, select **MC-X1** for **Sensor Input**.

Ехс	avator Options
Position Input :	None
Sensor Input :	MC-X1 -
Control Output :	None
	Back Next Cancel

Figure 50: Select the Appropriate Position and Sensor Input

- 6. Enter 3D/2D sensor values:
 - a. For 3D systems, tap **Next** to navigate to the **Excavator Antenna Mounting** screen, followed by the **Excavator Antenna Heights** screen. Enter the appropriate values as needed on both screens.
 - b. For 2D systems tap Next to navigate to the Excavator IMU Mounting screen, and select the appropriate values as needed. Then tap Next to navigate to the Boom / Body (1) screen. Enter the appropriate values.
- 7. If using a TS-i4 as a compass, select **TS-i4** from the drop-down menu. Then tap the **Wrench** icon to calibrate the compass. Follow the on-screen instructions.
- 8. Tap Next to navigate to the Boom / Body (2) screen. Enter the appropriate value.

Step 2: Designate each sensor to its corresponding implement.

NOTICE If using a TS-i4, **TS-i4-IMU** will be selected as the Sensor ID for the body.

For the Body, Boom, Stick, and Attachment sensors, Tap the appropriate **Sensor ID** box and select the serial number (last two digits) of the sensor corresponding to the machine element. Refer to your notes from installation to select the correct sensor ID from the drop-down menu.

1. Tap Next to navigate to the Excavator Frame/Sensor screen (Figure 51).

Figure 51: Select Body and Boom Sensor ID

- 2. Tap the appropriate **Sensor ID** box and select the serial number (last two digits) of the sensor corresponding to the machine element.
- 3. Enter the appropriate values.
- 4. Tap **Next** to access the **Excavator Stick** screen.

Figure 52: Select Stick Sensor ID

5. Enter the appropriate values, and select the corresponding sensor.

6. Tap Next to access the Excavator Hitch screen.

Excavator Hitch		Excavator Hitch		
Angle sensor:	On hitch/coupling	Angle sensor: On dog	bone	·
Sensor ID	? .	Sensor ID	?	•
			Len (1)	0.00'
		2. 4.	Len (2)	0.00'
		B.	Len (3)	0.00'
			Len (4)	0.00'
			Diff:	
	Back Next Cancel	Bac	k Next	Cancel

Figure 53: Select Bucket Sensor ID

- 7. Enter the appropriate values, and select corresponding sensor.
- 8. Tap Next to access the Excavator Attachments screen.
 - a. Tap New to access the Excavator Attachment Setup screen.
 - b. Enter or select the appropriate data as needed.

Figure 54: Excavator Attachments

- c. Press **Next** to access the **Calibrate Attachment Angle** screen (calibration performed in next chapter).
- d. Press **Next** to access the **Calibrate Bucket Base** screen (calibration performed in next chapter).
- e. Press Finish to access the Excavator Attachments screen.
- f. Repeat Steps a through e for each attachment.

Audible Guidance

- 1. Tap **Next** to access the **Audible Guidance** screen.
- 2. Enter the desired **Tone** and **Duration** settings.

Figure 55: Audible Guidance

Lightbars

- 1. Tap **Next** to access the **Light Bars** screen.
- 2. Enter the desired settings.

Light Bars					
Тор:	Steering x-track 🔹				
Precision:	1 (Fine) 🔻				
Left:	Cut/fill left 🔹				
Precision:	1 (Fine) 🔻				
Right:	Cut/fill right 🔹				
Precision:	1 (Fine) 🔻				
	Back Next Cancel				

Figure 56: Lightbars

Configuration Complete

- 1. Tap **Next** to access the **Configuration Complete!** screen.
- 2. Press **Finish** to save configuration, or press **Cancel** to return to the **Machine Files** screen without saving.

Configuration complete !					
Machine configuration is complete ! Press "Finish" to save the configuration file.					
Back Finish Cancel					

Figure 57: Configuration complete!

Before calibrating the sensors, note the following:

	If using the DogBone mounting option, worn joints in the DogBone linkage will cause decreased accuracy.
CAUTION	The best practice is to perform the machine calibrations as ordered in this manual. Performing the calibrations out of order will not affect system performance. There are two exceptions to this rule when using a DogBone sensor: a. You must calibrate the stick sensor before calibrating the DogBone sensor. b. When using a tilt bucket sensor you must calibrate the attachment/DogBone sensor before calibrating the tilt bucket sensor.

Sensor Filtering

The filter level for each sensor can be changed depending on the application and operator's choice. A value of 4 (heavy filtering) will dampen sensor reaction, while a value of 1 (light filtering) will cause faster sensor reaction.

- On the GX Series display, tap the Power Button ➤ Control ➤ Machine setup. Select the applicable machine file and tap Edit. Tap Next to navigate to the Excavator Frame/Sensors screen, Excavator Stick screen, or the Excavator Hitch screen.
- 2. Tap the **Wrench** licon next to **Sensor ID** (Figure 58).
- 3. Select a filtering level and tap **OK** (Figure 58).
- 4. Navigate through the remaining steps of Machine Setup, then save the file and exit 3D-MC.

Excavator Hitch		Sensor Calibration (Node 78, ID 0)				ID O)	
Angle sensor: Sensor ID			Attached To: Attac Serial #: 000-		Attachme 000-000	ment 10000	
			Orienta	tion:	Label left	_	
			Filtering	g:	3 🔹		
			Pitch:	Set	-9.7°	Offset:	0.0°
			Roll:	Set	0.0°	Offset: 🤇	0.0°
	Back Next Cancel					Ok	Cancel

Figure 58: Set Filtering Level

Body Sensor

Once the sensors are named, assigned to a machine element, and the orientation is selected, calibrate each sensor using 3D-MC. A sensor calibration can be performed at any time.

- 1. On the GX Series display, tap the **Power Button Control Machine setup**.
- 2. Select the appropriate machine file, and tap **Edit**.
- 3. Continue to press **Next** to access the **Excavator Frame/Sensors** screen.
- 4. Tap the **Wrench** licon for the body sensor.
- 5. Tap the **Orientation** box, and select the physical orientation of the mounted sensor; tap **OK**.

NOTICE Orientation is Label up with the arrow pointing one of the four directions.

Excavator Cram	c/Con					
Excavator Frame	Boom	Sens	or Cal	libration (Node 14,	ID O)
	18.65	Attache	d To:	Body		
L	Sensor	Serial #	:	000-000	00	
4 5	tsi3 7	Orientat	ion:	Label up,	arrow fo	rward 💌
Ť 🏓	■ 5eco	Filtering	:	0 (Off) 🔽	-	
Sensor ID (body)	Senso	Pitch:	Set	1.0°	Offset:	0.0°
🕂 🕘 tsi3d 14 Body 📩	2	Roll:	Set	-0.4°	Offset:	0.0°
Back	Next				Ok	Cancel

Figure 59: Select Sensor Orientation

Starting Position - Position 1

Rotate 180° - Position 2

Figure 60: Body Calibrations for Latitudinal Slope

- 6. Position the machine on a flat and stable surface, free of obstructions.
- 7. Curl the stick and bucket in as close as possible to reduce tipping errors.
- 8. Rotate the body parallel to the tracks (Position 1) as shown in Figure 60.
- 9. Tap **Set** next to **Pitch**, enter the value as zero, and tap **Set** again (Figure 61); repeat for the **Roll** value.

Figure 61: Set Pitch and Roll Values to Zero

- 10. Without moving the tracks, rotate the machine 180° (Position 2) as shown in Figure 60 on page 46.
- 11. Tap **Set** next to **Pitch**, set the value to half the displayed values, and tap **Set** again (i.e. -5.3/ 2 = -2.65 and -2.8/ 2 = -1.4) (Figure 62); repeat for the **Roll** value, and then tap **OK**.

Sensor Calibration (Node 14, ID 0)						
Attached To: Serial #:	To: Body 000-00000					
Orientation:	Label up, arrow forward 💌					
Filtering:	0 (Off) 🔽					
Pitch: Set	-2.65°	Offset: <mark>0.0°</mark>				
Roll: Set	-l.40°	Offset: <mark>0.0°</mark>				
		Ok Cancel				

Figure 62: Set Pitch and Roll Value to Half of Displayed Values

Once the body sensor roll value is calibrated, rotate the machine until the body Roll is 0.0. The remaining sensors require 0.0 Roll to be calibrated.

12. Tap **Ok** to return to the **Excavator Frame/Sensor** screen.

Boom Sensor

CAUTION

When performing the boom sensor calibration, a laser is recommended to correctly position the boom at zero degrees.

- 1. Tap the **Wrench** licon that corresponds to the boom sensor (Figure 64).
- 2. Select the correct orientation from the drop-down menu.
- 3. Ensure the machine is parked on a flat and stable surface, and that the Body Sensor reads a 0.0 degree roll.
- 4. Place a zero slope rotating laser along the side of the machine to shine on both the boom pivot and stick pivot.
- 5. Adjust the laser height to strike the center of the boom pivot (Figure 63).
- 6. Move the boom to align the stick pivot with the laser (Figure 63).

Figure 63: Place Laser to Strike Center of Boom Pivot

- 7. Tap the **Wrench** (Figure 64).
- 8. Tap **Set** next to **Pitch**, enter the value as zero, and tap **Set** again (Figure 64).

Excavator Frame/Sensors		Sensor Calibration (Node 76, ID 0)				
	Boom length (1) 18.65' Sensor ID (boom) Stsi3 76 Boom	Attached To: Serial #: Orientation:	Boom 000-000 Label left	00		
	🔳 Secondary (2)	Filtering:	0 (Off) 🔻			
	0.00'	Pitch: Set	0.0°	Offset: <mark>0.0°</mark>		
Sensor ID (body)	Sensor (secondary)	Roll: Set	0.0°	Offset: 0.0°		
es tsi3d 14 Body	2					
Back	Next Cancel			Ok Cancel		

Figure 64: Set Pitch Value to Zero

9. Tap **OK** to return to the **Excavator Frame/Sensors** screen.

Secondary Boom Sensor (Optional)

The secondary boom sensor uses the same calibration method as the primary boom sensor.

1. Check the **Secondary Boom** check box (Figure 65), and see "Boom Sensor" on page 47 for instructions on calibrating the secondary boom sensor.

Figure 65: Secondary Boom Check Box

2. Tap **Next** to access the **Excavator Stick** screen.

Stick Sensor

- 1. Tap the **Wrench** licon that corresponds to the stick sensor (Figure 67 on page 50).
- 2. Select the correct orientation from the drop-down menu.
- 3. When performing the stick sensor calibration position the stick at -90 degrees. -90 degrees is accomplished when the Bucket Pivot Pin is directly under the Stick Pivot Pin. A magnet and plumb bob is recommended for this step.
- 4. Position the stick at -90° (Figure 66 on page 49).

Figure 66: Stick at -90°

5. Tap **Set** next to **Pitch**, enter the **Pitch** value as -90.0°, and tap **Set** again (Figure 67).

Figure 67: Set Pitch Value to -90.0

Excavator Hitch

There are two options to mount the hitch sensor:

- Mount the sensor directly on the attachment/bucket, or inside the quick release coupler.
- Mount the sensor on the DogBone.

Because the DogBone option requires extra steps before calibrating the bucket, this procedure will be discussed first.

NOTICE If mounting the hitch sensor directly on the attachment, or inside the quick-release coupler, skip to "On Hitch/Coupling" on page 52.

DogBone Sensor

When performing the DogBone sensor calibration, a builder's level is required to correctly position the DogBone at zero degrees.

The DogBone calibration compares the stick sensor to the DogBone sensor to determine bucket angle. The stick sensor must be properly calibrated before attempting the DogBone calibration.

1. Tap the **Wrench** licon that corresponds to the DogBone sensor (Figure 68).

2. Select the correct orientation from the drop-down menu (Figure 68).

Excavato	r Hitch			
Angle sensor: On dog	bone		Sensor Cal	ibration (Node 78, ID 0)
Sensor ID	tsi3 78 Attachm Len (1) 0.00' Len (2) 0.00' Len (3) 0.00' Len (4) 0.00' Diff: 0 Next Cancel	E	Attached To: Serial #: Orlentation: Filtering: Pitch: Set Roll: Set	Attachment 000-00000 Label left 0 (Off) 0.0° 0ffset: 0.0° 0.0° 0.0° 0ffset: 0.0° 0k Cancel

Figure 68: Check Sensor Mounted on DogBone.

- 3. Set the DogBone pivot pin and the bucket pivot pin vertical with either a plumb bob or a survey instrument. Then set the DogBone horizontal using a builder's level.
- 4. Once the DogBone is square and level, tap Set next to Pitch, enter 0.00, and tap Set.

Sensor Cal	ibration (Node 78, ID 0)
Attached To:	Attachment
Serial #:	000-00000
Orientation:	Label left 🔹
Filtering:	0 (Off) 💌
Pitch: Set	0.0° Offset: 0.0°
Roll: Set	0.0° Offset: 0.0°
	Ok Cancel

Figure 69: Set Pitch Value to Zero

- 5. Tap **OK**; the **Excavator DogBone** screen appears (Figure 70).
- 6. Tap the **Wrench** (a) icon; the **DogBone Calibration** screen appears.
- 7. Ensure that the angle between the DogBone and line between the DogBone pivot pin and the attachment pivot pin is still 90 degrees, as was done in step 3.
- 8. Tap **OK**; the **Excavator DogBone** screen appears with a stick angle difference displayed.

Figure 70: Determine Stick Angle Difference

9. If this is the last sensor physically connected to the machine, see "CAN Termination" on page 23.

On Hitch/Coupling

1. When performing the on hitch/coupling sensor calibration, position the bucket at -90° degrees.

Figure 71: On Hitch/Coupling

Calibration

- 2. Align the bucket pivot, and the bucket teeth.
- 3. On the GX Series display, tap the **Power Button → Control → Machine setup**, select the applicable machine file for the job, and tap **Edit**.
- 4. Tap Next to navigate to the Excavator Hitch screen.
- 5. Tap the **Wrench** (2) icon for the bucket sensor.
- 6. Tap **Set** next to **Pitch**, enter the **Pitch** value as -90.0 degrees, and tap **Set** again (Figure 72).

Sensor C	alibration (Node 78, ID 0)					
Attached To Serial #:	red To: Attachment #: 000-00000					
Orientation	Label left 🔹					
Filtering:	0 (Off) 💌					
Pitch: Se	t <mark>-90.0°</mark> Offset: <mark>0.0°</mark>					
Roll: Se	0.0° Offset: 0.0°					
	Ok Cancel					

Figure 72: Set the Pitch Value to -90.0°

7. If this is the last sensor physically connected to the machine, see "CAN Termination" on page 23.

Attachment Edge

Perform the following attachment edge calibration procedures for all attachment types. These calibrations must also be performed for each individual attachment when using multiple attachments.

- 1. On the GX Series display, tap the **Power Button > Control > Machine setup**.
- 2. Tap Next until the Excavator attachments screen appears
- 3. Select the attachment that is on the machine.
- 4. Tap Edit. The Excavator attachment setup screen appears.
- 5. Tap Next.

6. With the attachment plumb, tap **Calibrate** from the **Calibrate Attachment Angle** screen (Figure 73); tap **Next** to go to the **Calibrate Bucket Base** screen.

Figure 73: Calibrate Attachment Angle

7. Move the attachment so that the bottom of the attachment lays flat on the ground, and tap **Calibrate**; tap **Finish** to go to the **Excavator Attachments** screen (Figure 74).

Calibrate Bucket Base			
Angle from pivot to base :			
Calibrate	Excavato	o <mark>r Attachme</mark> i	nts
	Name	Width	Length
	ΒUCKET 1	3.281'	4.921'
Back Finish Cancel	Edit New	Delete Back Next	: Cancel

Figure 74: Calibrate Attachment Base

NOTICE If setting up multiple attachments of any kind, skip to "Multiple Attachments".

Multiple Attachments

If a using a quick coupler to switch attachments, mount the sensor to the quick release mechanism, or the DogBone, not the attachment. When calibrating multiple attachments, you must perform the vertical and flat attachment calibrations for each applicable attachment; see "Attachment Edge" on page 53.

Tilt Bucket

- On the GX Series display, tap the Power Button > Control > Machine setup. Select the applicable machine file for the job and tap Edit. The Configuration name/type screen appears.
- 2. Tap **Next** until you reach the **Excavator Attachments** screen, and then tap **New** to create a new Tilting bucket, or tap **Edit** to calibrate an existing Tilting bucket.
- 3. Select **Tilting Bucket** from the drop-down menu, and enter the bucket **Width** and **Length** (Figure 75).
- 4. Enter a value for the tilt bucket Length (3), and select a Sensor ID for the tilt bucket sensor.

Figure 75: Enter Tilt Bucket Measurements

- 5. Using a carpenter's level adjust the bucket until the tilt pin is horizontal.
- 6. Using a carpenter's level, adjust the cross slope of the bucket until the bucket is level.
- 7. In 3D-MC, tap the **Wrench** (2) icon next to the **Sensor ID**.
- 8. Select the sensor's **Orientation** based on this position (Figure 76).
- **Note that the Single-axis TS-i3 sensor orientation is only Iabel front / arrow right** or **Iabel back / arrow right**. If using the Dual-axis TS-i3d, the orientation is **Iabel up / arrow front**, **Iabel up / arrow back**, **Iabel up / arrow left**, or **Iabel up / arrow right**.

Dual-axis TS-i3d

Single-axis TS-i3

Sensor Cal	libration (Node 80, ID 0)	Sensor Ca	libration	(Node 81, ID 0)	
Attached To:	Tilt bucket	Attached To:	Tilt buck	Tilt bucket	
Serial #:	000-00000	Serial #:	000-00	000	
Orientation:	Label front / arrow right 💌	Orientation:	Label up), arrow right 🛛 🝷	
Filtering:	0 (Off) 💌	Filtering:	O (Off)	-	
Pitch: Set	90.0° Offset: 0.0°	Pitch: Set	90.0°	Offset: <mark>0.0°</mark>	
Roll: Set	49.9° Offset: 0.0°	Roll: Set	1.0°	Offset: <mark>0.0°</mark>	
	Ok Cancel			Ok Cancel	

Figure 76: Select Tilt Sensor Orientation

For both single-axis TS-i3 Sensor and dual-axis TS_i3d sensor follow steps 9
to 12For tilt bucket always use the SET buttons to calibrate the tilt bucket. In
calibration steps 9 to 12, 3D-MC calculates the relation (or position) between
the hitch and tilt bucket sensor, and stores the value.Even when dual axis TS-i3d sensor for tilt bucket is used, the pitch will be
used from the hitch sensor.

9. Tap the Set button for Pitch. A popup screen will appear.

Sina	lo-avio	TS-i3
Silly	ie-axis	13-13

Sensor Cal	ibration (Node 80, ID 0)	٩
Attached To: Serial #:	Tilt bucket 000-00000	Adj
Orientation:	Label front / arrow right	(1)
Filtering:	0 (Off)	Ρгε
Pitch: Set	0.0° Offset: -91.5°	
Roll: Set	1.1° Offset: 0.0°	
	Ok Cancel	•
		Adju
		רי (ו)

Press 'Ok' when done

Ok

Figure 77: Set Pitch

- 10. To set the pitch:
 - a. Single-axis: Ensure the tilt axis (or pin) is horizontal. Tap **Ok**.
 - The **Pitch** will be set to **0.0**, and the relationship between the Tilt Pivot and the Hitch sensor is recorded.
 - b. Dual-axis: Ensure the tilt axis (or pin) is horizontal and the tilt is level. Tap **Ok**.
 - The **Pitch** will be set to **0.0**, and the relationship between the Tilt Pivot and the Hitch sensor is recorded.
- 11. Tap the **Set** button for **Roll** (Figure 78 on page 58). A popup screen will appear.

Cancel

iensor Cal	ibration (Node 80,	ID O)	•	
tached To:	ched To: Tilt bucket		Adjust bucket so that:		
rial #: 000-00000			(1) 'Tilt Sensor' is vertical		
ientation:	Label from	nt / arrow	right ·	(2) Tilt is zero	
tering:	<mark>0 (Off)</mark>			Press 'Ok' when don	E
ch: Set	-0.1°	Offset: 🛃	91.5°	Ok	Cance
ll: Set	0.0°	Offset: 📕	1.2°		
				Dual-axis TS-i3d	
		Ok	Cancel	0	
				Adjust bucket so that:	
				(1) 'Tilt Pivot' is level (2) Tilt is zero	
				Press 'Ok' when done	
				Ok	Cance

Single-axis TS-i3

Figure 78: Set Roll

12. To set the roll:

Se Or

Fil

Pit

Ro

- a. Single-axis TS-i3: Ensure **Tilt** is zero and the Tilt Sensor is vertical. For the Tilt sensor to be vertical, the label must be straight forward with arrow pointing to the right from the cab perspective or straight back with arrow pointing to the right from the cab perspective. Tap **Ok**.
 - The roll will be set to 0.0, and the relationship between the verticality of the tilt sensor and Hitch sensor will be recorded
- b. Dual-axis TS-i3d: The Tilt Sensor should be horizontal (label facing up). Ensure the Tilt Pivot is level and the Tilt is zero. Tap **Ok**.
 - The roll will be set to **0.0**.

13. Tap **Ok** to finish this calibration.

Tilting Rotating Bucket

Refer to the Installation and Setup manual from the manufacturer of the tilting / rotating bucket.

Calibrating the LS-B10W

To calibrate the LS-B10W Laser Receiver, determine the position of the receiver on the stick. After calibrating the sensor, 3D-MC will determine the angle of the LS-B10W to the stick center line.

- 1. Position the machine on a stable surface free of obstructions, and rotate the body to 0.0° roll.
- 2. Orient the stick so that the LS-B10W is positioned vertically.
- 3. On the GX Series display, tap the **Power Button** > **Control** > **Machine setup**. Select the applicable machine file for the job, and tap **Edit**.
- 4. Tap Next to navigate to the Laser Receiver (LSB10W) screen.
- 5. Enter the following measurements for the LS-B10W (Figure 79).
 - Depth to center of stick enter the measurement for the distance between the middle of the stick to the light cells on the LS-B10W.
 - **From bucket pivot** enter the measurement for the distance from the along the projected line between the bucket pivot and stick pivot at the point where the LS-B10W is perpendicular to the projected line (Figure 79).
 - Left of pivot line enter the measurement for the distance between the mark on the LS-B10W and the pivot line. If right of pivot line, use a negative value.
- 6. Make sure the LS-B10W Laser Receiver is vertical, and then tap **Calibrate** to determine the angle between the stick and the LS-B10W (Figure 79).

Figure 79: LS-B10W Laser Receiver Measurements

Performing a full system test verifies the accuracy of the excavator systems at various machine positions.

It is your responsibility to be completely familiar with the cautions described in these installation instructions. These messages advise against the use of specific methods or procedures, which can result in personal injury, damage to the equipment, or unsafe operating conditions. Remember, most accidents are caused by failure to observe basic safety precautions.

Testing Machine Element Sensors for Accuracy

Testing the sensors on the boom, stick, and bucket requires three bucket measurements at three boom and stick extensions.

- 1. Using a hub, record the local coordinates with the following machine positions facing North.
- 2. Then rotate 180° and record each position again facing South.

Record Bucket Positions with Boom and Stick Fully Extended

Record Bucket Positions with Boom and Stick in Mid-extension

Record Bucket Positions with Boom and Stick Retracted

If a hub with a known position is available, use those coordinates as the reference. Otherwise, use the first position as a reference. Compare each position to the reference. The difference should be within \pm 0.2Ft.

String Line Verification

The following sections describe setting up a string line to test the sensor accuracy.

Setup

- 1. Set a zero slope using a laser.
- 2. Set up a string line the length of the machine's reach, and then set up the string level.
- 3. Utilize the measure slope feature to perform the following test. For more information on the Measure Slope function, refer to the *3D-MC User's Manual P/N 1013510-01*.

Test

- 1. Extend the machine implements so that the bucket is at the far end of the string line.
- 2. Lower the bucket to the string, and tap OK on the **Measure first point** screen of the **Measure Slope** feature in 3D-MC.
- 3. Retract the machine implements so that the bucket is at the near end of the string.
- Lower the bucket to the string and tap <u>OK</u> on the **Measure second point** screen of the Measure Surface feature. The sloping surface created by 3D-MC should match the slope of the string line as set by the laser.
- 5. Position the bucket on the string at several points, and compare the cut/fill readings shown in 3D-MC; cut/fill readings should be zero for each position (Figure 80).

Figure 80: Move the Bucket and Compare 3D-MC Measurements

Reasonable accuracy is within 0.10[']. If the machine is well maintained and the measurements made within this guide are precise, accuracy should be even better.

6. If the measurements read zero from point to point, the test is done. If they do not, see "Troubleshooting" on page 64.

Troubleshooting

When troubleshooting, begin with the hitch sensors. If you are unable to determine the problem, proceed with the stick sensor, and then the boom sensor. Note that for the hitch and boom sensors, there are optional secondary sensors that should be checked if they are used. If you are unable to determine the problem after following the procedures below, contact Topcon support.

Hitch Sensor

- 1. Position the hitch above the string line so that the bucket teeth or edge are at their closest point to the string.
- 2. Place the bucket teeth or edge on the string, and zero the bucket in 3D-MC.
- 3. Curl only the bucket in and out in various positions, and measure the distance from the string line to the bucket teeth a with measuring tape (Figure 81).

Figure 81: String Line Verification - Bucket

- 4. Compare the measuring tape values with those shown in 3D-MC.
- 5. If the measurements compared against 3D-MC match, there could be an issue with one of the other sensors; repeat steps 1-4 and reverify.
- 6. If the measurements compared against 3D-MC still match, check the tilt bucket sensor (if used), and then follow the steps in "Stick Sensor" below.
- 7. If the measurements compared against 3D-MC do not match, each sensor must be evaluated for machine measurement or calibration errors.

Stick Sensor

- 1. Position the bucket above the string line so that the bucket teeth or edge are at their closest point to the string.
- 2. Place the bucket teeth or edge on the string, and zero the bucket in 3D-MC.
3. Curl only the stick in and out at various positions, and measure the distance from the string line to the bucket teeth with a measuring tape (Figure 82).

Figure 82: String Line Verification - Stick

- 4. Compare the measuring tape values with those shown in 3D-MC.
- 5. If the measurements compared against 3D-MC match, there could be an issue with one of the other sensors; repeat steps 1-4 and reverify.
- 6. If the measurements compared against 3D-MC still match, follow the steps in "Boom Sensor" below.
- 7. If the measurements compared against 3D-MC do not match, each sensor must be evaluated for machine measurement or calibration errors.

Boom Sensor

- 1. Position the bucket above the string line so that the bucket teeth or edge are at their closest point to the string.
- 2. Place the bucket teeth or edge on the string, and zero the bucket in 3D-MC.
- 3. Curl only the boom in and out at various positions, and measure the distance from the string line to the bucket teeth with a measuring tape (Figure 83).

Figure 83: String Line Verification - Boom

- 4. Compare the measuring tape values with those shown in 3D-MC.
- 5. If the measurements compared against 3D-MC match, repeat steps 1-4 and reverify.

- 6. If the values still match, check the secondary boom sensor (if used), and then the body sensor.
- 7. If the measurements compared against 3D-MC do not match, each sensor must be evaluated for machine measurement or calibration errors.

LS-B10W Test

- 1. Set the Rotating Laser to transmit a flat plane beam.
- 2. Set flat string line, and measure the distance from the laser plane to the string line using a grade rod with laser receiver.

Figure 84: Laser Plane to String Line Measurement

Distance from laser plane to string line:

- 3. Create a 0% Known Slope Surface in 3D-MC by tapping the **Topcon Logo button** → **Tools** → **Known Slope,** ensure grade is 0.00%, and tap **OK**.
- 4. Place the LS-B10W in the laser plane, and press the **Zero to laser** button.
- 5. Set the **Elevation Set Point** equal to the distance from string to laser plane.

Adjust e	levation
Elevation (bucket) :	7.93'
Zero to laser	Zero to bucket
Elevation set point	0.00' Set
	Ok Cancel

Figure 85: Zero to Laser

6. Touch the bucket tooth to the string and verify grade.

Figure 86: Laser Plane to String Line Measurement

- 7. Track the machine to a different location. Perform the **Zero to laser** function again.
- 8. Touch the bucket tooth to the string and verify grade.

Specifications

This chapter provides specifications for the MC-X1 Controller and GR-i3 Antenna.

MC-X1

Table 2 lists the MC-X1 specifications.

General	
Supply Voltage	9-32VDC
Supply Current	0.2A typical operating current; max. at 24VDC input power, no peripheral equipment;7.5A max. operating current
Electromagnetic Compatibility	Applicable Standards Emissions: Applicable regulation: EN 13309:2010; ISO13766:2006; EN 55032:2012 Immunity: Applicable regulation: EN 13309:2010; ISO 13766:2006; EN 301 489-1
Switched Output Power	5A sensor/conditioned output power
Ports	1 ea. port RS232/Digital IO 2 ea. Ethernet 2 ea. CAN
Wireless	WIFI 802.11abgn and BT 2.0/BLE 4.1
Environmental	
Operating Temperature	-40°C (-40°F) to +80°C (176°F)
Moisture Test	Per SR-012 level 2: 240 hours at 96%RH
Ingress Protection	IP67
Shock Test	25G 11 ms 1/2 sine wave 6X each axis
Salt Fog Test	ASTM B117-03
Vibration Test	10-2000Hz Random, 7.7 Grms.

Table 2. MC-X1 Specifications

Connector Pinouts

Conn A - DTM06 12-pin (A-coded, Gray)

1	Power In
2	Ground
3	Ground
4	Conditioned Power Out
5	Ignition input (HW interlock and input to CPU)
6	Ground
7	Ethernet – RX+
8	Ethernet – RX-
9	Ethernet – TX+
10	Ethernet – TX-
11	CAN 1 – L
12	CAN 1 – H

Conn B - DTM06 12-pin (A-coded, Gray)

1	Ethernet – RX+
2	Ethernet – RX-
3	Ethernet – TX+
4	Ethernet – TX-
5	CAN 2 – Low
6	CAN 2 – High
7	Conditioned power out
8	Ground
9	Ground
10	Digital In/Out, RS-232 RX, PPS/Event In/Out
11	Digital In/Out, RS-232 TX, PPS/Event In/Out
12	Conditioned Power Out

Table 2 lists the GR-i3 specifications.

General	
Supply Voltage	9-32VDC
Supply Current	0.2A typical operating current @ 24VDC 0.3A max. operating current @ 24VDC
Electromagnetic Compatibility	Applicable Standards Emissions: Applicable regulation: EN55022:1994 NA Immunity: Applicable regulation: EN55024:1998 A1:2001 and A2:2003 ESD: ±8KV RF: 27 to 500 MHz 3V/m Fast transient: ±0.5KV capacitively coupled
Ports	CANopen
Wireless	BT 2.0/BLE 4.0
Environmental	
Operating Temperature	Wired Operation via CAN: -40°C (-40°F) to +80°C (176°F) Wireless Operation: -30°C (-22°F) to +60°C (140°F)
Moisture Test	NA
Ingress Protection	IP67
Shock Test	25G 11 ms ¹ / ₂ sine wave each axis
Salt Fog Test	ASTM B117-03
Vibration Test	10-2000Hz Random, 7.7 GRMS, 8 hours each axis
Physical	
Housing	Magnesium alloy and PBT+PC Alloy
Housing Dimensions	135mm (5.31 in.) x 85mm (3.35 in.) x 36mm (1.42 in.)
Connectors	Custom 9-pin Pogo connector
Weight	0.68 Kg. (1.5 lbs)
Signal Tracking	
Channels	226 Universal Tracking Channels
Signals Tracked	GPS: L1, L2, L2C; GLONASS: L1, L2, L2C; BeiDou: B1, B2; Galileo: E1; SBAS; QZSS: L1, L2C

Table 3. GR-i3 Specifications

Table 3. GR-i3 Specifications

Accuracy	Standalone H: 1.2 m; V: 1.8 m
	DGPS H: 0.3 m; V: 0.5 m
	SBAS H: 0.8 m; V: 1.2 m
	RTK H: 5 mm + 0.5 ppm x baseline; V: 10 mm + 0.8 ppm x baseline
	RTK Initialization Time < 10 seconds
	RTK Initialization Reliability > 99%
	KIK INITIALIZATION RELIADILITY > 99%

Connector Pinouts

Conn A - 9-pin Pogo	
1	Power
2	CAN H
3	CAN L
4	—
5	—
6	—
7	—
8	Wire DN
9	Ground

WiFi Antenna

BLACK OMNI ANTENNA, 2.4-2.5 GHZ WI-F1

Topcon P/N: 1020001-01

Manufacturer: LAIRD TECHNOLOGIES Manufacturer P/N: TRAB24003

Table 4. V	NiFi Antenna	Specifications
------------	--------------	----------------

General	
Specific Frequency	2400-2500 MHz
Gain dBi	3 dBi
Mobile Antenna Mounting Type	NMO
Antenna Material	Plastic
Maximum Power	100 W
Item Height	2.7 IN (69 MM)

WiFi Antenna Magnet Mount

HIGH FREQ NMO MAG MOUNT 0-6GHZ

Topcon p/n 1020002-01

Manufacturer: LAIRD TECHNOLOGIES Manufacturer P/N: GB195RPSMAI

Table 5. WiFi Antenna Magnet Mount Specifications

General	
Frequency Range	0-6 GHz
Mounting Type	Magnetic base, NMO mount
Installation	Metallic/magnet mountable surface
Operating Temperature	-40°C (-40°F) to +85°C (+185°F)
Cable Type	Low loss, double-shielded ATX195
Cable Length	12 ft. (3.65 m)
Pull Strength	80 lbs

General Warnings

- 1. Read and become familiar with the machine manufacturer's operator's manual, including safety information, before installing or using Topcon components.
- 2. Use extreme caution on the job site. Working around heavy construction equipment can be dangerous.
- 3. DO NOT attach Topcon brackets, cables, or hose connections while the machine is running.
- 4. DO NOT allow any Topcon components to limit the visibility of the operator.
- 5. Use Ty-wraps to keep hoses and cables secured, and away from possible wear or pinch points.
- 6. Use eye protection when welding, cutting, or grinding on the machine.
- 7. Protect yourself at all times, and wear protective clothing when working on or near hydraulic lines. Hydraulic lines can be under extreme pressure, even when the machine is turned off.

DANGER	Relieve all pressure in the hydraulic lines before disconnecting or removing any lines, fittings, or related components. If injury occurs, seek medical assistance immediately.
	When welding, use appropriate precautions and practices. After welding, all affected areas should be painted with a rust inhibitor.
DANGER	Disconnect all Topcon system electrical cables prior to welding on the machine.
DANGER	DO NOT weld near hydraulic lines or on any equipment when in operation.
	All mounting bracket welds must be secure and strong to prevent the sensor equipment from vibrating excessively, or from detaching at the weld during operation.
CAUTION	 This product should never be used: Without the operator thoroughly understanding the Operator's Manual and Quick Reference Guide. After disabling safety systems or altering the product. With unauthorized accessories.

- Without proper safeguards at the job site.
- Contrary to applicable laws, rules, and regulations.

WARNING TPS products should never be used in dangerous environments. Use in rain or snow for a limited period is permitted.

Tampering with the unit by the operator or non-factory authorized technicians will void the unit's warranty:

- Do not attempt to open the unit and modify any of its internal components.
- Do not short circuit.

RF Radiation Hazard Warning

To ensure compliance with FCC and Industry Canada RF exposure requirements, this device must be installed in a location where the antennas of the device will have a minimum distance of at least 20 cm from all persons. Using higher gain antennas and types of antennas not certified for use with this product is not allowed. The device shall not be located with another transmitter.

Installez l'appareil en veillant à conserver une distance d'au moins 20 cm entre les éléments rayonnants et les personnes. Cet avertissement de sécurité est conforme aux limites d'exposition définies par la norme CNR102 at relative aux fréquences radio.

Regulatory Information

The following sections describe the FCC and IC statements.

FCC Statements

FCC Rule15.19(a)(3)

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation."

FCC Rule 15.21

Changes to the device not approved by the Topcon could void the user's ability to operate the device.

IC Statements

This Class A digital apparatus complies with Canadian ICE-S003.

The term "IC:" before the radio certification number only signifies that Industry Canada technical specifications were met.

Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum

(or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (EIRP) is not more than that necessary for successful communication. This device complies with Industry Canada license exempt RSS standard(s). Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of the device. Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser) gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type and its gain should be so chosen that the equivalent isotropically radiated power (EIRP) is not more than that necessary for successful communication.

Déclaration de conformité IC

Cet appareil numérique de la classe A est conforme à la norme NMB-003 du Canada.

Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope rayonnée équivalente (PIRE) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Ce matériel respecte les standards RSS exempt de licence d'Industrie Canada. Son utilisation est soumise aux deux conditions suivantes: (1) l'appareil ne doit causer aucune interférence, et (2) l'appareil doit accepter toute interférence, quelle qu'elle soit, y compris les interférences susceptibles d'entraîner un fonctionnement non requis de l'appareil. Selon la réglementation d'Industrie Canada, ce radio transmetteur ne peut utiliser qu'un seul type d'antenne et ne doit pas dépasser la limite de gain autorisée par Industrie Canada pour les transmetteurs. Afin de réduire les interférences potentielles avec d'autres utilisateurs, le type d'antenne et son gain devront être définis de telle façon que la puissance isotrope rayonnante équivalente (PIRE) soit juste suffisante pour permettre une bonne communication.

Voltage

Input Voltage: 12 Vdc or 24 Vdc

Functional Range: 9-32 Vdc

Open Source Support

The Topcon TotalCare website contains the licenses and notices for open source software used in this product.

With respect to the free/open source software, if you have any questions or wish to receive a copy of the source code to which you are entitled under the applicable free/open source license(s), such as the GNU Lesser/General Public License, please visit http://topconcare.com/en/support/.

www.topconpositioning.com

©2018 Topcon Corporation 7400 National Drive • Livermore, CA • 94550 Specifications subject to change without notice. All rights reserved. 1022461-01 Rev B Draft 06/18