

INSTRUCTION MANUAL Geodetic Measurement Station

GM-50 series

HOW TO READ THIS MANUAL

Thank you for selecting the GM-50 series.

- Please read this Operator's manual carefully, before using this product.
- GM has a function to output data to a connected host computer. Command operations from a host computer can also be performed. For details, refer to "Communication manual" and ask your local dealer.
- The specifications and general appearance of the instrument are subject to change without prior notice and without obligation by TOPCON CORPORATION and may differ from those appearing in this manual.
- The content of this manual is subject to change without notice.
- Some of the diagrams shown in this manual may be simplified for easier understanding.
- Always keep this manual in a convenient location and read it when necessary.
- This manual is protected by copyright and all rights are reserved by TOPCON CORPORATION.
- Except as permitted by Copyright law, this manual may not be copied, and no part of this manual may be reproduced in any form or by any means.
- This manual may not be modified, adapted or otherwise used for the production of derivative works.

Symbols

The following conventions are used in this manual.
: Indicates precautions and important items which should be read before operations.
Note : Indicates the chapter title to refer to for additional information.
Notates supplementary explanation.

Notes regarding manual style

- Except where stated, "GM" means GM-50 series in this manual.
- Except where stated, instrument with display on both sides is used for illustration.
- Learn basic key operations in "1. NOMENCLATURE AND FUNCTIONS" before you read each measurement procedure.
- Measurement procedures are based on continuous measurement. Some information about procedures when other measurement options are selected can be found in "Note" (Note).
- Bluetooth ${ }^{\circledR}$ is a registered trademark of Bluetooth SIG, Inc.
- KODAK is a registered trademark of Eastman Kodak Company.
- All other company and product names featured in this manual are trademarks or registered trademarks of each respective organization.

JSIMA :This is the mark of the Japan Surveying Instruments Manufacturers Association.

PRECAUTIONS FOR SAFE OPERATION

For the safe use of the product and prevention of injury to operators and other persons as well as prevention of property damage, items which should be observed are indicated by an exclamation point within a triangle used with WARNING and CAUTION statements in this instruction manual.
The definitions of the indications are listed below. Be sure you understand them before reading the manual's main text.

Definition of Indication

A WARNING	Ignoring this indication and making an operation error could possibly result in death or serious injury to the operator.
CAUTION	Ignoring this indication and making an operation error could possibly result in minor injury or property damage.

\triangle
This symbol indicates items for which caution (hazard warnings inclusive) is urged. Specific details are printed in or near the symbol.

This symbol indicates items which are prohibited.
Specific details are printed in or near the symbol.

This symbol indicates items which must always be performed.
Specific details are printed in or near the symbol.

General

Warning

Do not use the unit in areas exposed to high amounts of dust or ash, in areas where there is inadequate ventilation, or near combustible materials. An explosion could occur.

Do not perform disassembly or rebuilding. Fire, electric shock, burns or hazardous radiation exposure could result.

Never look at the sun through the telescope. Loss of eyesight could result.
Do not look at reflected sunlight from a prism or other reflecting object through the telescope. Loss of eyesight could result.
(! Direct viewing of the sun using the telescope during sun observation will cause loss of eyesight. Use solar filter (optional accessory) for sun observation.
(!
When securing the instrument in the carrying case make sure that all catches, including the side
catches, are closed. Failure to do so could result in the instrument falling out while being carried, causing injury.

Caution

Do not use the carrying case as a footstool. The case is slippery and unstable so a person could slip and fall off it.

Do not place the instrument in a case with a damaged catch, belt or handle. The case or instrument could be dropped and cause injury.

Do not wield or throw the plumb bob. A person could be injured if struck.

Secure handle to main unit with locking screws. Failure to properly secure the handle could result in the unit falling off while being carried, causing injury.
!
Tighten the adjustment tribrach clamp securely. Failure to properly secure the clamp could result in the tribrach falling off while being carried, causing injury.

Do not disassemble or rebuild the battery or the battery charger, nor expose to heavy shocks or vibration. Sparking, fire, electric shock or burns could result.

Do not short circuit. Heat or ignition could result.
Do not place articles such as clothing on the battery charger while charging batteries. Sparks could be induced, leading to fire.

Do not use voltage other than the specified power supply voltage. Fire or electrical shock could result.

Do not use batteries other than those designated. An explosion could occur, or abnormal heat generated, leading to fire.

Do not use damaged power cords, plugs or loose outlets. Fire or electric shock could result.
Do not use power cords other than those designated. Fire could result.
(! Use only the specified battery charger to recharge batteries. Other chargers may be of different voltage rating or polarity, causing sparking which could lead to fire or burns.

Do not use the battery or charger for any other equipment or purpose. Fire or burns caused by ignition could result.

Do not heat or throw batteries or chargers into fire. An explosion could occur, resulting in injury.
(l To prevent shorting of the battery in storage, apply insulating tape or equivalent to the terminals.
Otherwise shorting could occur resulting in fire or burns.

Do not use the battery or the battery charger if its terminals are wet. Resultant poor contact or shorting could lead to fire or burns.

Do not connect or disconnect power supply plugs with wet hands. Electric shock could result.

1. Caution

Do not touch liquid leaking from batteries. Harmful chemicals could cause burns or blisters.

Caution

(! When mounting the instrument to the tripod, tighten the centering screw securely. Failure to tighten the screw properly could result in the instrument falling off the tripod, causing injury.
(1)

Tighten securely the leg fixing screws of the tripod on which the instrument is mounted. Failure to tighten the screws could result in the tripod collapsing, causing injury.

Do not carry the tripod with the tripod shoes pointed at other persons. A person could be injured if struck by the tripod shoes.
(1) Keep hands and feet away from the tripod shoes when fixing the tripod in the ground. A hand or foot stab wound could result.
! Tighten the leg fixing screws securely before carrying the tripod. Failure to tighten the screws could lead to the tripod legs extending, causing injury.

4 Warning

Do not use within the vicinity of hospitals. Malfunction of medical equipment could result.
(1) Use the instrument at a distance of at least 22 cm from anyone with a cardiac pacemaker.
(! Otherwise, the pacemaker may be adversely affected by the electromagnetic waves produced and cease to operate as normal.

Do not use onboard aircraft. The aircraft instrumentation may malfunction as a result.
Do not use within the vicinity of automatic doors, fire alarms and other devices with automatic controls as they may be adversely affected by the electromagnetic waves produced resulting in malfunction and injury.

PRECAUTIONS

Before starting work or operation, be sure to check that the instrument is functioning correctly with normal performance.

Charging Battery

- Be sure to charge the battery within the charging temperature range.

Charging temperature range: 0 to $40^{\circ} \mathrm{C}$

- Use only the specified battery or the battery charger. Failures caused by using other batteries or battery chargers are out of warranty including the main unit.

Warranty policy for Battery

- Battery is an expendable item. The decline in retained capacity depending on the repeated charging/ discharging cycle is out of warranty.

Telescope

- Aiming the telescope at the sun will cause internal damage to the instrument. Use the solar filter when observing the sun.
[${ }^{3}$ "20. SPECIAL ACCESSORIES"

Tribrach Clamp and Handle

- When the instrument is shipped, the tribrach clamp is held firmly in place with a locking screw to prevent the instrument from shifting on the tribrachs. Before using the instrument the first time, loosen this screw with a precision screwdriver. And before transporting it, tighten the locking screw to fasten the tribrach clamp in place so that it will not shift on the tribrachs.
- The handle of the instrument can be removed. When operating the instrument with the handle attached, always make sure that the handle is securely fixed to the instrument body with the handle locks.

Precautions concerning water and dust resistance

GM conforms to IP66 specifications for waterproofing and dust resistance when the battery cover and external interface hatch are closed and connector caps are attached correctly.

- Be sure to close the battery cover and external interface hatch, and correctly attach the connector caps to protect the GM from moisture and dust particles.
The specification grade for water proofing and dust resistance is not guaranteed when using USB connector.
- Make sure that moisture or dust particles do not come in contact with the inside of the battery cover, terminal or connectors. Contact with these parts may cause damage to the instrument.
- Make sure that the inside of the carrying case and the instrument are dry before closing the case. If moisture is trapped inside the case, it may cause the instrument to rust.
- If there is a crack or deformation in the rubber packing for the battery cover or external interface hatch, stop using and replace the packing.
- To retain the waterproof property, it is recommended that you replace the rubber packing once every two years. To replace the packing, contact your local dealer.

The Lithium Battery

- This instrument contains lithium battery. It lasts for approximately 5 years of normal use and storage (Temperature $=20^{\circ} \mathrm{C}$, humidity $=$ about 50%), but its lifetime may be shorter depending on circumstances. To replace the lithium battery, contact your local dealer.

Vertical and horizontal clamps

- Always fully release the vertical/horizontal clamps when rotating the instrument or telescope. Rotating with clamp(s) partially applied may adversely affect accuracy.

Tribrach

- Always use the tribrach provided. During a traverse observation, it is recommended to use the same type of tribrach for the target as well for accurate observations.

Backing up data

- Data should be backed up (transfered to an external device etc.) on a regular basis to prevent data loss.

Other precautions

- Close the external interface hatch and battery cover before starting measurement. Otherwise, ambient light entering the USB port may adversely affect measurement results.
- If the GM is moved from a warm place to an extremely cold place, internal parts may contract and make the keys difficult to operate. This is caused by cold air trapped inside the hermetically sealed casing. If the keys do not depress, open the battery cover to resume normal functionality. To prevent the keys from becoming stiff, remove the connector caps before moving the GM to a cold place.
- Never place the GM directly on the ground. Sand or dust may cause damage to the screw holes or the centering screw on the base plate.
- Do not aim the telescope directly at the sun. Also, attach the lens cap to the telescope when not in use. Use the Solar filter to avoid causing internal damage to the instrument when observing the sun. [争"20. SPECIAL ACCESSORIES"
- Do not perform vertical rotation of the telescope when using the lens hood, diagonal eyepiece, or solar filter. Such accessories may strike the instrument causing damage.
- Protect the GM from heavy shocks or vibration.
- Never carry the GM on the tripod to another site.
- Turn the power off before removing the battery.
- When placing the GM in its case, first remove its battery and place it in the case in accordance with the layout plan.
- Consult your local dealer before using the instrument under special conditions such as long periods of continuous use or high levels of humidity. In general, special conditions are treated as being outside the scope of the product warranty.

Maintenance

- Wipe off moisture completely if the instrument gets wet during survey work.
- Always clean the instrument before returning it to the case. The lens requires special care. First, dust it off with the lens brush to remove tiny particles. Then, after providing a little condensation by breathing on the lens, wipe it with the silicon cloth.
- If the display unit is dirty, carefully wipe it with a soft, dry cloth. To clean other parts of the instrument or the carrying case, lightly moisten a soft cloth in a mild detergent solution. Wring out excess water until the cloth is slightly damp, then carefully wipe the surface of the unit. Do not use any alkaline cleaning solutions, alcohol, or any other organic solvents, on the instrument or display unit.
- Store the GM in a dry room where the temperature remains fairly constant.
- Check the tripod for loose fit and loose screws.
- If any trouble is found on the rotatable portion, screws or optical parts (e.g. lens), contact your local dealer.
- When the instrument is not used for a long time, check it at least once every 3 months.
[予"18. CHECKS AND ADJUSTMENTS"
- When removing the GM from the carrying case, never pull it out by force. The empty carrying case should be closed to protect it from moisture.
- Check the GM for proper adjustment periodically to maintain the instrument accuracy.

Bluetooth Wireless Technology

- Bluetooth function may not be built in depending on telecommunications regulations of the country or the area where the instrument is purchased. Contact your local dealer for the details.
- Use of this technology must be authorized according to telecommunications regulations of the country where the instrument is being used. Contact your local dealer in advance. [了 " 25 . REGULATIONS"
- TOPCON CORPORATION is not liable for the content of any transmission nor any content related thereto. When communicating important data, run tests beforehand to ascertain that communication is operating normally.
- Do not divulge the content of any transmission to any third party.

Radio interference when using Bluetooth technology

Bluetooth communication with the GM uses the 2.4 GHz frequency band. This is the same band used by the devices described below.

- Industrial, scientific, and medical (ISM) equipment such as microwaves and pacemakers.
- portable premises radio equipment (license required) used in factory production lines etc.
- portable specified low-power radio equipment (license-exempt)
- IEEE802.11b/IEEE802.11g/IEEE802.11n standard wireless LAN devices
- The above devices use the same frequency band as Bluetooth communications. As a result, using the GM within proximity to the above devices may result in interference causing communication failure or reduction of transmission speed.

Although a radio station license is not required for this instrument, bear in mind the following points when using Bluetooth technology for communication.

- Regarding portable premises radio equipment and portable specified low-power radio equipment:
- Before starting transmission, check that operation will not take place within the vicinity of portable premises radio equipment or specified low-power radio equipment.
- In the case that the instrument causes radio interference with portable premises radio equipment, terminate the connection immediately and take measures to prevent further interference (e.g. connect using an interface cable).
- In the case that the instrument causes radio interference with portable specified low-power radio equipment, contact your local dealer.
- When using Bluetooth function in proximity to IEEE802.11b/IEEE802.11g/IEEE802.11n standard wireless LAN devices, turn off all wireless LAN devices not being used.
- Interference may result, causing transmission speed to slow or even disrupting the connection completely.
- Do not use the GM in proximity to microwaves.
- Microwave ovens can cause significant interference resulting in communication failure. Perform communication at a distance of 3 m or more from microwave ovens.
- Refrain from using the GM in proximity to televisions and radios.
- Televisions and radios use a different frequency band to Bluetooth communications. However, even if the GM is used within proximity to the above equipment with no adverse effects with regard to Bluetooth communication, moving a Bluetooth compatible device (including the GM) closer to said equipment may result in electronic noise in sound or images, adversely affecting the performance of televisions and radios.

Precautions regarding transmission

- For best results
- The usable range becomes shorter when obstacles block the line of sight, or devices such as PDAs or computers are used. Wood, glass and plastic will not impede communication but the usable range becomes shorter. Moreover, wood, glass and plastic containing metal frames, plates, foil and other heat shielding elements as well as coatings containing metallic powders may adversely affect Bluetooth communication and concrete, reinforced concrete, and metal will render it impossible.
- Use a vinyl or plastic cover to protect the instrument from rain and moisture. Metallic materials should not be used.
- Reduced range due to atmospheric conditions
- The radio waves used by the GM may be absorbed or scattered by rain, fog, and moisture from the human body with the limit of usable range becoming lower as a result. Similarly, usable range may also shorten when performing communication in wooded areas. Moreover, as wireless devices lose signal strength when close to the ground, perform communication at as high a position as possible.
- TOPCON CORPORATION cannot guarantee full compatibility with all Bluetooth products on the market.

Exporting this product (Relating EAR)

This product is equipped with the parts/units, and contains software/technology, which are subject to the EAR (Export Administration Regulations). Depending on countries you wish to export or bring the product to, a US export license may be required. In such a case, it is your responsibility to obtain the license. The countries requiring the license as of May 2013 are shown below. Please consult the Export Administration Regulations as they are subject to change.

North Korea
Iran
Syria
Sudan
Cuba
URL for the EAR of the US: http://www.bis.doc.gov/policiesandregulations/ear/index.htm

Exporting this product (Relating telecommunications regulations)

Wireless communication module is incorporated in the instrument. Use of this technology must be compliant with telecommunications regulations of the country where the instrument is being used.
Even exporting the wireless communication module may require conformity with the regulations.
Contact your local dealer in advance.

Exceptions from Responsibility

- The manufacturer, or its representatives, assumes no responsibility for any damage, or loss of profits (change of data, loss of data, loss of profits, an interruption of business etc.) caused by use of the product or an unusable product.
- The manufacturer, or its representatives, assumes no responsibility for any damage, or loss of profits caused by usage different to that explained in this manual.
- The manufacturer, or its representatives, assumes no responsibility for consequential damage, or loss of profits due to heavy rain, strong wind, high-temperature and humidity, or storing or use of the product under unusual conditions.
- Product failures caused by rebuilding are out of warranty.
- Cautions and warnings included in this manual do not cover all the possible events.

LASER SAFETY INFORMATION

GM is classified as the following class of Laser Product according to IEC Standard Publication 60825-1 Ed.3.0: 2014 and United States Government Code of Federal Regulation FDA CDRH 21CFR Part 1040.10 and 1040.11 (Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No.50, dated June 24, 2007.)

Device		Laser class
EDM device in objective lens	Light beam used for measurement (When reflectorless measurement is selected in Config mode)	Class 3R
	Light beam used for measurement (When prism or reflective sheet is selected as target in Config mode)	Class 1
	Laser-pointer	Class 3R
	Class 2	

*1: Laser plummet is available as a factory option depending on the country or the area where the instrument is purchased.

- EDM device is classified as Class 3R Laser Product when reflectorless measurement is selected. When the prism or reflective sheet is selected in Config mode as target, the output is equivalent to the safer class 1.

© Warning

- Use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.
- Follow the safety instructions on the labels attached to the instrument as well as in this manual to ensure safe use of this laser product.

*: only for instruments with laser plummet (option)
- Never intentionally point the laser beam at another person. The laser beam is injurious to the eyes and skin. If an eye injury is caused by exposure to the laser beam, seek immediate medical attention from a licensed ophthalmologist.
- Do not look directly into the laser beam source. Doing so could cause permanent eye damage.
- Do not stare at the laser beam. Doing so could cause permanent eye damage.
- Never look at the laser beam through a telescope, binoculars or other optical instruments. Doing so could cause permanent eye damage.
- Sight targets so that laser beam does not stray from them.

©Caution

- Perform checks at start of work and periodic checks and adjustments with the laser beam emitted under normal conditions.
- When the instrument is not being used, turn OFF the power.
- When disposing of the instrument, destroy the battery connector so that the laser beam cannot be emitted.
- Operate the instrument with due caution to avoid injuries that may be caused by the laser beam unintentionally striking a person in the eye. Avoid setting the instrument at heights at which the path of the laser beam may strike pedestrians or drivers at head height.
- Never point the laser beam at mirrors, windows or surfaces that are highly reflective. The reflected laser beam could cause serious injury.
- After using the Laser-pointer function, be sure to turn OFF the emission of the laser beam.
- Only those who have been received training as per the following items shall use this product.
- Read the Operator's manual for usage procedures for this product.
- Hazardous protection procedures (read this chapter).
- Requisite protective gear (read this chapter).
- Accident reporting procedures (stipulate procedures beforehand for transporting the injured and contacting physicians in case there are laser induced injuries).
- Persons working within the range of the laser beam are advised to wear eye protection which corresponds to the laser wavelength of the instrument being used.
- Areas in which the laser is used should be posted with a standard laser warning sign.

Symbol mark while the laser is emitting

The following symbol mark will appear at the right side of the second line.

Contents

1 NOMENCLATURE AND FUNCTIONS 1-1
1.1 Nomenclature 1-1
1.2 Display 1-3
1.3 Operating Key 1-4
1.4 Function Key (Soft Key) 1-5
1.5 Starkey mode 1-7
1.6 Serial signal RS-232C connector 1-9
1.7 Bluetooth communication (Only for Bluetooth function built-in model) 1-9
2 PREPARATION FOR MEASUREMENT 2-1
2.1 Power Switch Key ON 2-1
2.2 Battery Power Remaining Display 2-2
2.3 Vertical and Horizontal Angle Tilt Correction 2-3
2.4 How to Enter Alphanumeric Characters 2-5
2.5 Setting Instrument Up for Measurement 2-8
2.5.1 Centering 2-8
2.5.2 Levelling 2-10
2.6 FOCUSSING AND TARGET SIGHTING 2-11
3 ANGLE MEASUREMENT 3-1
3.1 Measuring Horizontal Angle Right and Vertical Angle 3-1
3.2 Switching Horizontal Angle Right/Left. 3-1
3.3 Measuring from the Required Horizontal Angle 3-2
3.3.1 Setting by Holding the Angle 3-2
3.3.2 Setting a Horizontal Angle from the Keys 3-2
3.4 Vertical Angle Percent Grade(\%) Mode 3-3
3.5 Repetition Angle Measurement 3-3
3.6 Buzzer Sounding for Horizontal Angle 90° Increments. 3-4
3.7 Compasses (vertical angle) 3-5
4 DISTANCE MEASUREMENT 4-1
4.1 Setting of the Atmospheric Correction 4-2
4.2 Setting of the Correction for Prism Constant 4-2
4.3 Distance Measurement (Continuous Measurement) 4-2
4.4 Distance Measurement (N-time Measurement/Single Measurement) 4-3
4.5 Fine Mode/Tracking Mode/Coarse Mode 4-4
4.6 Stake Out (S.O) 4-5
4.7 Offset Measurement 4-6
4.7.1 Angle Offset 4-7
4.7.2 Distance Offset Measurement 4-9
4.7.3 Plane Offset Measurement 4-11
4.7.4 Column Offset Measurement 4-13
5 COORDINATE MEASUREMENT 5-1
5.1 Setting Coordinate Values of Occupied Point. 5-1
5.2 Setting Height of the Instrument 5-2
5.3 Setting Height of Target (Prism Height) 5-2
5.4 Execution of Coordinate Measuring 5-3
6 SPECIAL MODE (Menu Mode) 6-1
6.1 Application Measurement (PROGRAMS) 6-2
6.1.1 Remote Elevation measurement (REM) 6-2
6.1.2 Missing Line Measurement (MLM) 6-5
6.1.3 Setting Z Coordinate of Occupied Point. 6-8
6.1.4 Area Calculation. 6-11
6.1.5 Point to Line Measurement 6-14
6.2 Setting the GRID FACTOR. 6-16
6.3 Setting Illumination of Display and Cross Hairs 6-17
6.4 Setting Mode 1 6-18
6.4.1 Setting Minimum Reading 6-18
6.4.2 Auto Power Off. 6-19
6.4.3 Vertical and Horizontal Angle Tilt correction (Tilt ON/OFF) 6-20
6.4.4 Systematic Error of Instrument Correction 6-20
6.4.5 Setting RS-232C communication with external device 6-22
6.4.6 Selecting Communication Port. 6-23
6.4.7 Confirming the Bluetooth Device Address (Only for Bluetooth function built-in model) 6-24
6.4.8 Humidity Input ON/OFF Setting 6-25
6.4.9 NP-TRK MODE Setting 6-26
6.4.10 EDM ECO. MODE Setting 6-27
6.4.11 Volume Setting. 6-28
6.5 Setting Contrast of Display 6-29
6.6 Displaying Instrument Information 6-29
6.7 Road 6-30
6.7.1 Inputting Start Point 6-31
6.7.2 Inputting Road Data 6-32
6.7.3 Searching Data 6-36
6.7.4 Editing Data 6-36
6.7.5 Setting OCC and BS 6-37
6.7.6 Stake-out Road 6-39
6.7.7 Selecting a File 6-40
6.7.8 Initializing ROAD data 6-40
7 DATA COLLECTION 7-1
7.1 Preparation 7-3
7.1.1 Selecting a File for Data Collection 7-3
7.1.2 Selecting a Coordinate File for Data Collection 7-4
7.1.3 Occupied Point and Backsight Point 7-5
7.2 Operational Procedure of DATA COLLECT 7-7
7.2.1 Searching the recorded data 7-8
7.2.2 Entering PCODE / ID using PCODE Library 7-8
7.2.3 Entering PCODE / ID from the list of PCODE 7-9
7.3 Data Collect Offset Measurement mode. 7-10
7.3.1 Angle Offset Measurement 7-10
7.3.2 Distance Offset Measurement 7-12
7.3.3 Plane Offset Measurement 7-14
7.3.4 Column Offset Measurement 7-16
7.4 NEZ Auto Calculation 7-17
7.5 Point to Line Measurement. 7-18
7.5.1 To change to the point to line measurement 7-18
7.5.2 Executing a point to line measurement 7-19
7.6 Editing PCODE Library [PCODE INPUT] 7-20
7.7 Setting Parameter of Data Collect [CONFIG.] 7-21
8 LAYOUT 8-1
8.1 Preparation 8-3
8.1.1 Setting the GRID FACTOR 8-3
8.1.2 Selecting Coordinate Data File 8-4
8.1.3 Setting Occupied Point 8-5
8.1.4 Setting Backsight Point 8-7
8.2 Executing a Layout 8-9
8.2.1 Layout of Coordinates of Point to Line 8-11
8.3 Setting a New Point 8-12
8.3.1 Side Shot Method 8-12
8.3.2 Resection Method 8-14
9 MEMORY MANAGER MODE 9-1
9.1 Display Internal Memory Status 9-2
9.2 Searching Data 9-3
9.2.1 Measured Data Searching 9-3
9.2.2 Coordinate Data Searching 9-5
9.2.3 PCODE LIBRARY Searching 9-6
9.3 File Maintenance 9-7
9.3.1 Rename a File 9-8
9.3.2 Searching Data in a File 9-8
9.3.3 Deleting a File 9-9
9.4 Coordinate Data Direct Key Input 9-10
9.4.1 Coordinate data input 9-10
9.4.2 PTL (Point to Line) data input 9-11
9.5 Delete a Coordinate Data from a File 9-12
9.6 Editing PCODE Library 9-13
9.7 Data Communications 9-14
9.7.1 Sending Data 9-14
9.7.2 Loading Data 9-16
9.7.3 Setting Parameter of Data Communications 9-17
9.7.4 Confirming the parameters for Bluetooth communication (Only for Bluetooth function built-in model) 9-18
9.8 Initialization 9-19
10 SET AUDIO MODE 10-1
11 SETTING THE PRISM CONSTANT VALUE 11-1
12 SETTING ATMOSPHERIC CORRECTION 12-1
12.1 Calculation of Atmospheric Correction 12-1
12.2 Setting of Atmospheric Correction Value 12-2
13 CORRECTION FOR REFRACTION AND EARTH CURVATURE 13-1
13.1 Distance Calculation Formula 13-1
14 POWER SOURCE AND CHARGING 14-1
14.1 Battery Charging 14-1
14.2 Installing/Removing the Battery 14-2
15 USING USB FLASH DRIVE 15-1
15.1 Inserting the USB flash drive 15-1
16 DETACH/ATTACH OF TRIBRACH. 16-1
17 SELECTING MODE 17-1
17.1 Items of the Selecting Mode 17-1
17.2 How to Set Selecting Mode 17-3
18 CHECKS AND ADJUSTMENTS 18-1
18.1 Circular Level 18-1
18.2 Adjustment of Vertical Angle 0 Datum 18-2
18.3 Adjustment of Compensation Systematic Error of Instrument 18-3
18.4 Reticle. 18-5
18.5 Optical Plummet 18-6
18.6 Additive Distance Constant. 18-7
18.7 Checking and Adjusting of Laser Plummet*1 18-8
19 TOP FIELD MODE 19-1
19.1 MAIN MENU (Major Functions) 19-1
19.2 JOB 19-1
19.2.1 To Create New Job 19-1
19.2.2 To Select Existing Job 19-2
19.2.3 To Delete Job 19-2
19.2.4 When Job is not to be Used 19-3
19.3 SETTING 19-3
19.4 GO TO WORK 19-4
19.4.1 To Set Occupied Point and Backsight 19-4
19.4.2 To Layout 19-13
19.4.3 To Conduct Ordinary Measurement and to Record Coordinates 19-14
19.5 DATA MANAGER 19-16
19.5.1 To Add Coordinate Data 19-16
19.5.2 To Delete Coordinate Data 19-20
19.5.3 To View Coordinate Data 19-21
19.5.4 To Edit Coordinate Data 19-22
19.5.5 To Transfer Coordinate Data 19-23
20 SPECIAL ACCESSORIES 20-1
21 BATTERY SYSTEM 21-1
22 PRISM SYSTEM 22-1
23 ERROR DISPLAYS 23-1
24 SPECIFICATIONS 24-1
25 REGULATIONS 25-1

1 NOMENCLATURE AND FUNCTIONS

1.1 Nomenclature

1 Handle
2 Instrument height mark
3 Battery cover
4 Operation panel
5 Serial connector
6 Circular level
7 Circular level adjusting screws
8 Base plate
9 Levelling foot screw
10 Optical plummet focussing ring
11 Optical plummet eyepiece
(10,11: Not included in instruments with laser plummet)
12 Display unit
13 Objective lens (Includes Laser-pointer function)
14 Handle locking screw
15 Tubular compass slot
16 Vertical clamp
17 Vertical fine motion screw
18 External interface hatch (USB port/ Reset button)
19 Horizontal fine motion screw
20 Horizontal clamp
21 Tribrach clamp
22 Telescope eyepiece screw
23 Telescope focussing ring
24 Sighting collimator
(Gun sight on GM-55 in Face 2 position)
25 Instrument center mark

- Sighting collimator

Use sighting collimator to aim the GM in the direction of the measurement point. Turn the instrument until the triangle in the sighting collimator is aligned with the target.
A gun sight is mounted on Face 2 position of the iM-55. Align the telescope to the direction of the target in such a way that the gun sight is positioned with the target as shown below. Note that you see the target at a distance from the gun sight.

Horizontal direction: a position where you can see both the target and back sight at the center of the front sight's slit.

Vertical direction: a position where you can see the tops of the front sight and back sight at the same height of the target's center.

- Instrument height mark

The height of the GM is as follows:

- 192.5 mm (from tribrach mounting surface to this mark)
- 236 mm (from tribrach dish (TR-103R) to this mark)
"Instrument height" is input when setting instrument station data and is the height from the measuring point (where GM is mounted) to this mark.
- Laser-pointer Function

A target can be sighted with a red laser beam in dark locations without the use of the telescope.

- Handle

The carrying handle can be removed from the instrument when the prism is located at the zenith etc.
To remove it, loosen the handle locking screw.

1.2 Display

- Display

The display uses a graphic LCD which has 4 lines and 20 characters per line. In general, the upper three lines display measured data, and the bottom line displays the soft key function which changes with the measuring mode.

- Contrast and Illumination

The contrast and illumination of display window are adjusted. [TB See Chapter 6 "SPECIAL MODE (Menu Mode)" or section 1.5 "Starkey mode".

- Example

V :	$90^{\circ} 10^{\prime} 20^{\prime \prime}$
HR:	$120^{\circ} 30^{\prime} 40^{\prime \prime}$
OSET HOLD HSET P1 \downarrow	

Angle measurement mode

V-angle	$: 90^{\circ} 10^{\prime} 20^{\prime \prime}$
H-angle	$: 120^{\circ} 30^{\prime} 40^{\prime \prime}$

Feet unit

| HR: $120^{\circ} 30^{\prime} 40 "$ |
| :---: | :---: |
| HD* 123.45 f |
| VD: 12.34 f |
| MEAS MODE NP/P P1 \downarrow |

Horizontal-angle	$: 120^{\circ} 30^{\prime} 40^{\prime \prime}$
Horizontal distance	$: 123.45 \mathrm{ft}$
Relative elevation	$: 12.34 \mathrm{ft}$

```
HR: \(120^{\circ} 30^{\prime} 40^{\prime \prime}\)
HD* 65.432 m
VD: \(\quad 12.345 \mathrm{~m}\)
MEAS MODE NP/P P1 \(\downarrow\)
```

Distance measurement mode
Horizontal-angle : $120^{\circ} 30^{\prime} 40^{\prime \prime}$
Horizontal distance : 65.432 m
Relative elevation : 12.345 m
Feet and inch unit

HR:	$120^{\circ} 30.40 "$
HD*	123.04 .6 f
VD:	12.03 .4 f
MEAS MODE NP/P P1 \downarrow	

Horizontal-angle : 120º${ }^{\prime} 40^{\prime \prime}$
Horizontal distance : $123 \mathrm{ft} 4 \mathrm{in} 6 / 8 \mathrm{in}$
Relative elevation : 12 ft 3 in $4 / 8$ in

Display marks

Display	Contents	Display	Contents
V	V-angle	$*$	EDM working
HR	H-angle right	m	Meter unit
HL	H-angle left	f	Feet unit / Feet and inch unit
HD	Horizontal distance	N	Non-prism mode
VD	Slope distance	S coordinate	Sheet mode
SD	E coordinate	Laser emitting mark	

1.3 Operating Key

Keys	Name of Key	Function
\{ * \}	Starkey	Switches to Starkey mode This mode is used for each presetting or displaying as follows. 1 Contrast of the display, 2 Reticle illumination, 3 Laser pointer, 4 Tilt correction, 5 Set audio mode, 6 Laser Plummet - Press $\{\star$ \} during Starkey mode to go to the Tilt Screen. \mathbb{T} For levelling procedure: see Section 2.5.2 "Levelling".
$\left\{\downarrow^{\circ}\right\}$	Coordinate meas.key	Switches to coordinate measurement mode
\{ \leq]	Distance meas.key	Switches to distance measurement mode
\{ANG\}	Angle meas.key	Switches to angle measurement mode
\{MENU\}	Menu key	Switches to menu mode Starts measurement applications and performs various settings
	Illumination key	Lights up the display unit and key Switches the screen/key backlight and Reticle illumination ON/OFF
$\{\otimes$ \}	Target key	Switches between target types (prism mode/Sheet mode/Non-prism mode (Reflectorless mode))
\{FUNC\}	Function key	Switches Starkey mode pages (Laser plummet mounted model only)
$\begin{gathered} \{0\}-\{9\} / \\ \{.\} /\{ \pm\} \end{gathered}$	Alphanumeric characters key	Input letters/figures For entering alphanumeric characters, see Section 2.4 "How to Enter Alphanumeric Characters".
\{ESC $\}$	Escape key	- Returns to the measurement mode or previous layer mode from the mode set - Switches to data collection mode or layout mode directly from the normal measurement mode - It is also possible to use as Record key in normal measurement mode. \mathbb{C} For selecting function of Escape key, see Chapter 17 "SELECTING MODE" .
\{B.S.\}	Backspace key	Delete a character on the left
\{ENT\}	Enter key	Selects/accepts input word/value

Keys	Name of Key	Function
$\{\mathbb{D}\}$	Power key	Turns ON/OFF of power source (Press and hold: About 1 second) l In some cases, it may take longer until Power OFF. - Do not remove the battery until the display turns off. Doing so will cause data stored in the GM to be lost.
\{F1\} - \{F4\}	Soft key (Function key)	Respond to the message displayed.

1.4 Function Key (Soft Key)

The Soft Key message is displayed at the bottom line of display. The functions are according to the displayed message.

Angle measurement mode

Distance measurement mode

Coordinates measurement mode

Angle measurement

Page	Soft key	Display mark	Function
1	\{F1\}	0SET	Angle of Horizontal is set to $0^{\circ} 00^{\prime} 00^{\prime \prime}$
	\{F2\}	HOLD	Hold the horizontal angle.
	\{F3\}	HSET	Sets a required horizontal angle by entering numerals.
	\{F4\}	P1 \downarrow	The function of soft keys is shown on next page (P2).
2	\{F1\}	TILT	Setting Tilt Correction If ON, the display shows tilt correction value.
	\{F2\}	REP	Repetition angle measurement mode
	\{F3\}	V\%	Vertical angle percent grade(\%) mode
	\{F4\}	P2 \downarrow	The function of soft keys is shown on next page (P3).
3	\{F1\}	H-BZ	Sets the buzzer sound for every horizontal angle 90°.
	\{F2\}	R/L	Switches R/L rotation of horizontal angle.
	\{F3\}	CMPS	Switches the COMPASS ON/OFF of vertical angle.
	\{F4\}	P3 \downarrow	The function of soft keys is shown on next page (P1).

Distance measurement mode

1	\{F1\}	MEAS	Start measuring
	\{F2\}	MODE	Sets a measuring mode, Fine/Coarse/Tracking.
	\{F3\}	NP/P	Switches Non-prism mode, prism mode or Sheet mode.
	\{F4\}	P1 \downarrow	The function of soft keys is shown on next page (P2).
2	\{F1\}	OFSET	Select Off-set measurement mode.
	\{F2\}	S.O	Select Stake out measurement mode.
	\{F3\}	S/A	Select Set audio mode.
	\{F4\}	P2 \downarrow	The function of soft keys is shown on next page (P3).
3	\{F2\}	m/f/i	Switches meter, feet or feet and inch unit.
	\{F4\}	P3 \downarrow	The function of soft keys is shown on next page (P1).

Coordinate measurement mode

1	\{F1\}	MEAS	Start measuring.
	\{F2\}	MODE	Sets a measuring mode, Fine/Coarse/Tracking.
	\{F3\}	NP/P	Switches Non-prism mode, prism mode or Sheet mode.
	\{F4\}	P1 \downarrow	The function of soft keys is shown on next page (P2).
2	\{F1\}	R.HT	Sets a prism height by input values.
	\{F2\}	INSHT	Sets an instrument height by input values.
	\{F3\}	OCC	Sets an instrument coordinate point by input values.
	\{F4\}	P2 \downarrow	The function of soft keys is shown on next page (P3).
3	\{F1\}	OFSET	Select Off-set measurement mode.
	\{F2\}	m/f/i	Switches meter, feet or feet and inch unit.
	\{F3\}	S/A	Select set audio mode.
	\{F4\}	P3 \downarrow	The function of soft keys is shown on next page (P1).

1．5 Starkey mode

Press the $\{\star$ key to view the instrument options．
The following instrument options can be selected from the $\{\star\}$ ：
1．Adjustment the contrast of the display（0 to 15 steps）$\{\mathbf{\Delta}\}$ or $\{\nabla$ \}
2．Adjustment the reticle illumination（1 to 5 steps）$\{<\}$ or $\{>\}$
3．Turn the Laser pointer option ON／OFF
4．Setting Tilt Correction
5．S／A（set audio）mode
6．Adjustment the contrast of the laser plummet（1 to 5 steps）$\{\mathbf{\Delta}\}$ or $\{\boldsymbol{\nabla}\}$
7．Turn the Laser plummet option ON／OFF
－Starkey mode does not function when the same function as the function assigned to the Starkey mode is performed from the main routine．
－Press $\{\star$ \} during Starkey mode to go to the Tilt Screen.
膤 For levelling procedure：see Section 2．5．2＂Levelling＂．

＊Screen of laser plummet mounted model

key	Display mark	Function
\｛F1\}	thaser	Turn the Laser plummet option ON／OFF
\｛F2\}	（6）	Setting Tilt Correction If ON ，the display shows tilt correction screen．
\｛F3\}	国	Turn the Laser pointer option ON／OFF［ 湢／国 ］
\｛F4\}	4	The light acceptance quantity level for the EDM（SIGNAL），the atmospheric correction value（PPM）and correction value of prism constant（PSM／NPM／SHT）are displayed．＊1）
$\begin{aligned} & \{\boldsymbol{A}\} \\ & \text { or } \\ & \{\boldsymbol{\nabla}\} \end{aligned}$	\％	Adjust the contrast of the display（0 to 15 steps）
\｛ $<$ \} or $\{>$ \}	我	Adjust the Reticle Illumination（1 to 5 steps） ON／OFF of the reticle illumination is linked with ON／OFF of the backlight．
$\begin{aligned} & \{\boldsymbol{A}\} \\ & \text { or } \\ & \{\boldsymbol{\nabla}\} \end{aligned}$		Adjust the laser plummet brightness（1 to 5 steps） （displayed only when the laser plummet is ON ）

- Adjustment the contrast (0 to 15) of the display

This enable you to adjust the contrast of the display.
Press the up or down arrow keys to adjust the contrast.

- Adjustment the reticle illumination (1 to 5)

This enable you to adjust the reticle illumination.
Press the right or left arrow keys to adjust the reticle illumination.
The switch of reticle illumination will be interlocked with the switch of display backlight.

- Lighting and Extinguishing of Laser Pointer

Whenever the $\{\mathrm{F} 3\}$ key is pressed, the laser pointer will light up or be extinguished, in that order. The laser pointer assists with collimation by radiating visible laser light from the objective lens to the target.

- The laser pointer indicates the approximate collimation position of the telescope. It does not indicate the exact collimation position.
- You cannot see the laser pointer when looking through the telescope. Therefore, please look directly, with the naked eye, at the point indicated by the laser pointer.
- The distance to which the laser pointer can be used will vary with climatic conditions and with the eyesight of the user.
- When the laser pointer is used, the operating time of internal power source will become short.

- Tilt correction

The tilt setting mode performed here will not be memorized after powering OFF. To set TILT correction in the initialized setting (it is memorized after powering OFF), see Section 6.4.3 "Vertical and Horizontal Angle Tilt correction (Tilt ON/OFF)".

- Set audio mode

The light acceptance quantity level (Signal level) is displayed in this mode.
When reflected light from the prism is received, a buzzer sounds. This function is good for easy collimation when the target is difficult to find.
Press the \{F4\} key to view the set audio screen.
[J To stop the buzzer, refer to Chapter 17 "SELECTING MODE".
Also, it is possible to display the signal level in Distance Measuring Mode.
The temperature, pressure, PPM, PSM,NPM and SHT can be viewed in set audio mode.
\mathbb{B} Refer to Chapter 10 "SET AUDIO MODE", Chapter 11 "SETTING THE PRISM CONSTANT VALUE" and Chapter 12 "SETTING ATMOSPHERIC CORRECTION", for further instructions.

1.6 Serial signal RS-232C connector

The serial signal connector is used for connecting the GM with a computer or TOPCON Data Collector, which enables the computer to receive measured data from the GM or to send preset data of horizontal angle, etc. to it.

The following data will be output at each mode.

Mode	Output
Angle mode (V, HR or HL) (V in percent)	V, HR (or HL)
Horizontal distance mode (HR, HD, VD)	V, HR, HD, VD
Slope distance mode (V, HR, SD)	V, HR, SD, HD
Coordinate mode	N, E, Z, HR (or V, HR, SD, N, E, Z)

Note

- The display and the output at the coarse mode are the same as the contents above.
- Output at the tracking mode is displayed as distance data only.The details necessary for the connection with the GM are obtained from the GM- 50 series Interface Manual which is optionally available. Please refer to the manual.

1.7 Bluetooth communication (Only for Bluetooth function built-in model)

By built-in Bluetooth, it can communicate with Bluetooth instruments by wireless, without connecting a serial signal connector.

2 PREPARATION FOR MEASUREMENT

2.1 Power Switch Key ON

1 Confirm the instrument is leveled.
2 Press the power key.

- Confirm the battery power remaining display. Replace with charged battery or charge when battery level is low or indicates " $\left[{ }^{-+}\right.$". 㜿 See Section 2.2 "Battery Power Remaining Display".

- Contrast adjustment

You can confirm prism constant value (PSM), non-prism constant value (NPM), sheet constant value (SHT), atmospheric correction value (PPM) and you can also adjust the contrast of the display when the instrument is turned on.
忬 To display this screen, see Chapter 17 "SELECTING MODE".

```
CONTRAST ADJUSTMENT
PSM: 0.0 PPM 0.0
NPM: 0.0 SHT: 0.0
    \downarrow \ - - -
```

ENTER

This enables you to adjust the brightness by pressing the $\{\mathbf{F} 1\}(\downarrow)$ or $\{\mathbf{F} 2\}$ (\uparrow) key. To memorize the setting value after powering off, press \{F4\} (ENTER) key.

Note

- If you are experiencing problems with the software, depress the reset button to reboot the program forcibly. Use a provided hexagonal wrench ($1.3 \mathrm{~mm} / 1.5 \mathrm{~mm}$) or a tapered rod like a pin to depress down the reset button.
- Avoid using any sharp implement like a needle. Malfunction of the instrument could result.
- Pressing down the Reset button may result in file and folder data being lost.

2.2 Battery Power Remaining Display

Battery power remaining display indicates the power condition.

- The battery operating time will vary depending on the environmental conditions such as ambient temperature, charging time, the number of times of charging and discharging etc. It is recommended for safety to charge the battery beforehand or to prepare spare full charged batteries.
- For general usage of the battery, see Chapter 14 "POWER SOURCE AND CHARGING".
- The battery power remaining display shows the power level regarding to the measurement mode now operating.
The safety condition indicated by the battery power remaining display in the angle measurement mode does not necessarily assure the battery's ability to be used in the distance measurement mode.
It may happen that the mode change from the angle mode to the distance mode will stop the operation because of insufficient battery power for the distance mode which consumes more power than angle mode.

2.3 Vertical and Horizontal Angle Tilt Correction

When the tilt sensors are activated, automatic correction of vertical and horizontal angle for mislevelment is displayed.
To ensure a precise angle measurement, tilt sensors must be turned on. The display can also be used to fine level the instrument. If the (TILT OVER) display appears the instrument is out of automatic compensation range and must be leveled manually.

Note

- GM compensates both the vertical angle and the horizontal angle readings due to inclination of the standing axis in the X and Y directions.

When the instrument is out of compensation. (TILT OVER)

Standing Axis in the X direction out of range

Standing Axis in the Y direction out of range

Standing Axis in the X and Y directions out of range

- The display of Vertical or Horizontal angle is unstable when instrument is on an unstable stage or a windy day. You can turn OFF the auto tilt correction function of V/H angle in this case.
- To set auto tilt correction from the moment that power is on, See Section 6.4.3 "Vertical and Horizontal Angle Tilt correction (Tilt ON/OFF)".
- Setting Tilt Correction by Soft Key

To enable you to select tilt ON/OFF function. setting is not memorized after power is OFF.
[Example] Setting X,Y Tilt OFF

Operating procedure	Option	Display
1 Press \{F4\} key to get the function page 2.	\{F4\}	$\mathrm{V}:$ $90^{\circ} 10^{\prime} 20 \prime$ HR: $120^{\circ} 30^{\prime} 40^{\prime \prime}$ OSET
		TILT REP V\% P2 \downarrow
2 Press \{F1\} (TILT) key. In case ON is already selected, the display shows tilt correction value.	\{F1\}	$\begin{aligned} & \text { TILT SENSOR: [XY-ON] } \\ & \text { X: }-0^{\circ} 00^{\prime} 25 " \\ & Y \text { : } 0^{\circ} 00^{\prime} 20 " \\ & \mathrm{X}-\mathrm{ON} \text { XY-ON OFF --- } \end{aligned}$
3 Press \{F3\} (OFF) key.	\{F3\}	TILT SENSOR: [OFF] X-ON XY-ON OFF ---
4 Press \{ESC\} key.	\{ESC	$\mathrm{V}:$ $90^{\circ} 10^{\prime} 20^{\prime \prime}$ HR: $120^{\circ} 30^{\prime} 40^{\prime \prime}$ OSET

- The setting mode performed here will not be memorized after powering OFF. To set TILT correction in the initialized setting (it is memorized after powering OFF), See Section 6.4.3 "Vertical and Horizontal Angle Tilt correction (Tilt ON/OFF)".

2.4 How to Enter Alphanumeric Characters

This enables you to enter alphanumeric characters such as the instrument height, prism height, occupied point, backsight point etc.

Keys	Name of Key	Function
$\{0\}-\{9\}$	Number key	During numeric input, input number of the key. During alphabetic input, input the characters displayed above the key in the order they are listed.
$\{\} /.\{ \pm\}$	Decimal point key/ Plus-minus sign key	Input a decimal point/plus or minus sign during numeric input. During alphabetic input, input the characters displayed above the key in the order they are listed.
$\{\boldsymbol{\{ \} / \{ > \}}$	Cursor key	Right and left cursor/Select other option.
$\{\mathbf{A \}} /\{\nabla\}$	Cursor key	Up and down cursor.
$\{$ ESC $\}$	Escape key	Cancel the input data.
$\{\mathbf{B . S . \}}$	Backspace key	Delete a character on the left.
$\{$ ENT $\}$	Enter key	Select/accept input word/value.

- How to select a item

[Example setting] Occupied point in the data collection mode.

The arrow indicates a item to enter.

The arrow line moves up or down when the $\{\nabla$ \} key or $\{\mathbf{\Delta}$ \} key is pressed.

- How to enter characters
[Example setting] TOPCON-1

1 Move the arrow to enter a item using the $\{\nabla$ \} or $\{\mathbf{\Delta}$ \} key.

```
PT# ->
ID :
INS.HT: 0.000 m
INPUT SRCH REC OCNEZ
```

2 Press the \{F1\} (INPUT) key.
The arrow changes to the equal (=).
The instrument switches to numerical input mode.

```
PT# =
ID :
INS.HT: 0.000 m
[ALP] [SPC] [CLR] [ENT]
```

3 Press the \{F1\} ([ALP]) key.
The instrument switches to alphabetical input mode.

```
PT# =
ID :
INS.HT: 0.000 m
[NUM] [SPC] [CLR] [ENT]
```

4 Enter letters of the alphabet by pressing the alphanumeric characters key.
Example: \{1\} (STU) key is pressed twice.

```
PT# =T
ID :
INS.HT: 0.000 m
[NUM] [SPC] [CLR] [ENT]
```

5 Enter other letters of the alphabet in the same way.

6 Press the \{F1\} (NUM) key, again.
The instrument switches back to numerical input mode.

```
PT# =TOPCON
ID :
INS.HT: 0.000 m
[ALP] [SPC] [CLR] [ENT]
```

7 Enter numbers by pressing the alphanumeric characters key.
Example: $\{-\},\{1\}$ key is pressed.

```
PT# =TOPCON-1
ID :
INS.HT: 0.000 m
[ALP] [SPC] [CLR] [ENT]
```

8 Press \{F4\} (ENT) key.
The arrow moves to next item.
Select next character in the same manner.
Note

- To correct a character, move the cursor to correct character by pressing $\{<\}$ or $\{\$\}$ key and enter again.

2.5 Setting Instrument Up for Measurement

Mount the instrument to the tripod. Level and center the instrument precisely to insure the best performance. Use tripods with a tripod screw of 5/8 in. diameter and 11 threads per inch, such as the Type E TOPCON wide- frame wooden tripod.

- Mount the battery in the instrument before performing this operation because the instrument will tilt slightly if the battery is mounted after levelling.

2.5.1 Centering

- PROCEDURE: Centering with the optical plummet eyepiece

1 Make sure the legs are spaced at equal intervals and the head is approximately level.
Set the tripod so that the head is positioned over the survey point.
Make sure the tripod shoes are firmly fixed in the ground.

3 Looking through the optical plummet eyepiece, turn the optical plummet eyepiece to focus on the reticle. Turn the optical plummet focussing ring to focus on the survey point.
Place the instrument on the tripod head.
Supporting it with one hand, tighten the centering screw on the bottom of the unit to make sure it is secured to the tripod.

4 Adjust the levelling foot screws to center the survey point in the optical plummet reticle.

5 Continue to the levelling procedure.
\mathfrak{B} See Section 2.5.2 "Levelling".

- PROCEDURE: Centering with the laser plummet ${ }^{* 1}$
*1: Laser plummet is available as a factory option depending on the country or the area where the instrument is purchased.

1) Set up the tripod and affix the instrument on the tripod head.
$\mathbb{C} 3$ "PROCEDURE: Centering with the optical plummet eyepiece" steps 1 and 2
2) Power $O N$ the instrument.
$\mathbb{C} 3$ See Section 2.1 "Power Switch Key ON".
The electric circular level is displayed on the Tilt screen.
3) Press [L-ON].

The laser plummet beam will be emitted from the bottom of the instrument.

- Use $\{\}|\rangle$ in the second page to adjust the brightness of the laser.

4) Using levelling foot screws, adjust the position of the instrument on the tripod until the laser beam is aligned with the center of the survey point.
5) Press [L-OFF] to turn the laser plummet off. Alternatively, press $\{E S C\}$ to return to the previous screen. The laser plummet will switch off automatically.

Note

- Visibility of the laser spot may be affected when operating in direct sunlight. In this event, provide shade for the survey point.
- Laser plummet can be operated in Starkey mode as well.

吗 See Section 1.5 "Starkey mode".

2.5.2 Levelling

- PROCEDURE

1) Perform the centering procedure.
\mathbb{B} See Section 2.5.1 "Centering".
2) Roughly center the bubble in the circular level by either shortening the tripod leg closest to the offcenter direction of the bubble or by lengthening the tripod leg farthest from the offcenter direction of the bubble. Adjust one more tripod leg to center the bubble.
3) Power ON the instrument.
[家 See Section 2.1 "Power Switch Key ON".
The electric circular level is displayed on the <Tilt>.
" \bullet " indicates the bubble in circular level. The range of the inside circle is ± 4 ' and the range of the outside circle is ± 6.
Tilt angle values X and Y are also displayed on the screen.

- " \bullet " is not displayed when the tilt of the instrument exceeds the detection range of the tilt sensor. Level the instrument while checking the air bubbles in the circular level until " \bullet " is displayed on the screen.

Note

- When executing the measurement program, if measurement starts with the instrument tilted, the circular level is displayed on the screen.

4) Using levelling foot screws, center " \bullet " in the circular level.
First, turn the instrument until the telescope is parallel to a line between levelling foot screws A and B. Next, set the tilt angle to 0° using foot screws A and B for the X direction and levelling screw C for the Y direction.

- When the bubble is in the center, proceed to step 5.

5) Loosen the centering screw slightly.

Looking through the optical plummet eyepiece, slide the instrument over the tripod head until the survey point is exactly centered in the reticle.
Retighten the centering screw securely.
If the instrument is levelled using laser plummet, emit the laser plummet beam and check it again. \mathbb{T} See "PROCEDURE: Centering with the laser plummet*1"

Tilt ${ }^{\text {X }}-3$ '20"
Y 3'40"
OK L-ON

6) Check again to make sure the bubble in the electric circular level is centered.
If not, repeat the procedure starting from step 4.
7) Press $\{O K\}$ to return to Observation mode.

2.6 FOCUSSING AND TARGET SIGHTING

- When sighting the target, strong light shining directly into the objective lens may cause the instrument to malfunction. Protect the objective lens from direct light by attaching the lens hood. Observe to the same point of the reticle when the telescope face is changed.
- PROCEDURE

1 Look through the telescope eyepiece at a bright and featureless background.
Turn the eyepiece screw clockwise, then counterclockwise little by little until just before the reticle image becomes focussed.
Using these procedures, frequent reticle refocussing is not necessary since your eye is focussed at infinity.

2 Loosen the vertical and horizontal clamps, then use the sighting collimator to bring the target into the field of view. Tighten both clamps.

3 Turn the telescope focussing ring to focus on the target. Turn the vertical and horizontal fine motion screws to align the target with the reticle.
The last adjustment of each fine motion screw should be in the clockwise direction.

4 Readjust the focus with the focussing ring until there is no parallax between the target image and the reticle.

- Eliminating parallax

This is the relative displacement of the target image with respect to the reticle when the observer's head is moved slightly before the eyepiece.
Parallax will introduce reading errors and must be removed before observations are taken. Parallax can be removed by refocussing the reticle.

3 ANGLE MEASUREMENT

3.1 Measuring Horizontal Angle Right and Vertical Angle

Make sure the mode is in Angle measurement.

Operating procedure	Operation	Display
1 Collimate the 1st target (A).	Collimate A	$\begin{array}{\|c} \text { V : } 90^{\circ} 10^{\prime 2} 20 " \\ \text { HR: } 120^{\circ} 30^{\prime} 40 " \\ \text { OSET HOLD HSET P1 } \downarrow \end{array}$
2 Set horizontal angle of target A at $0^{\circ} 00^{\prime} 00$ ". Press the $\{\mathrm{F} 1\}$ (0 set) key and press the $\{\mathrm{F} 3\}$ (YES) key.	\{F1\}	$\begin{aligned} & \text { H ANGLE } 0 \text { SET } \\ & \quad>\text { OK? } \\ & - \\ & -----\quad \text { [YES] [NO] } \end{aligned}$
	\{F3\}	$\mathrm{V}:$ $90^{\circ} 10^{\prime} 20 "$ HR: $0^{\circ} 00^{\prime} 00 "$ OSET HOLD HSET
3 Collimate the 2nd target (B). The required V / H angle to target B will be displayed.	Collimate B	$\mathrm{V}:$ $98^{\circ} 36^{\prime} 20^{\prime \prime}$ $\mathrm{HR}:$ $160^{\circ} 40^{\prime} 20^{\prime \prime}$ OSET HOLD HSET P1 \downarrow

3.2 Switching Horizontal Angle Right/Left

Make sure the mode is Angle measurement.

Operating procedure	Operation	Display	
1 Press the $\{$ F4\} (\downarrow) key twice to get the function on page 3 .	$\{\mathrm{F} 4\}$ twice	V : $90^{\circ} 10^{\prime} 20^{\prime \prime}$ HR: $120^{\circ} 30^{\prime} 40^{\prime \prime}$ OSET HOLD HSET	
		TILT REP V\%	P2 \downarrow
		H-BZ R/L CMPS	P3 \downarrow
2 Press the \{F2\} (R/L) key. The mode Horizontal angle Right (HR) switches to (HL) mode.	\{F2\}	V : $90^{\circ} 10^{\prime 2} 20^{\prime \prime}$ HL: $239^{\circ} 29^{\prime 2} 0^{\prime \prime}$ H-BZ R/L CMPS P3 \downarrow	
3 Measure as HL mode.			

3.3 Measuring from the Required Horizontal Angle

3.3.1 Setting by Holding the Angle

Make sure the mode is angle measurement.

Operating procedure	Operation	Display
1 Set the required horizontal angle, using Horizontal tangent screw	Display angle	V : $90^{\circ} 10^{\prime} 20^{\prime \prime}$ HR: $130^{\circ} 40^{\prime} 20^{\prime \prime}$ OSET HOLD HSET P1 \downarrow
2 Press the \{F2\} (HOLD) key.	\{F2\}	
3 Collimate the target.	Collimate	
4 Press the \{F3\} (YES) key to finish holding the horizontal angle.*1) The display turns back to normal angle measurement mode.	\{F3\}	V : $\quad 90^{\circ} 10^{\prime} 20^{\prime \prime}$ HR: $130^{\circ} 40^{\prime} 20^{\prime \prime}$ OSET HOLD HSET P1 \downarrow
*1) To return to the previous mode, press the \{F4\} (NO) key.		

3.3.2 Setting a Horizontal Angle from the Keys

Make sure the mode is Angle measurement.

Operating procedure	Operation	Display
1 Collimate the target.	Collimate	$\|$V : $90^{\circ} 10^{\prime 2}$ HR: $170^{\circ} 30^{\prime \prime} 20^{\prime \prime}$ OSET HOLD HSET P1 \downarrow
2 Press the $\{$ F3\} (HSET) key.	\{F3\}	
3 Input the required horizontal angle by using keys. *1) For example: $70^{\circ} 40^{\prime} 20^{\prime \prime}$	$\begin{gathered} 70.4020 \\ \{F 4\} \end{gathered}$	$\begin{array}{\|cc\|} \hline \text { V : } \quad 90^{\circ} 10^{\prime} 20 " \\ \text { HR: } 70^{\circ} 40^{\prime} 20^{\prime \prime} \\ \text { OSET HOLD HSET } \end{array}$
When completed, normal measuring from the required Horizontal angle is possible.		
*1) To enter Alphanumeric characters, see Section 2.4 "How to Enter Alphanumeric Characters".		

3.4 Vertical Angle Percent Grade(\%) Mode

Make sure the mode is Angle measurement.

*1) Every time pressing the $\{\mathrm{F} 3\}$ (V\%) key, the display mode switches.

- When the measurement is carried out over $\pm 45^{\circ}(\pm 100 \%)$ from the horizontal, the display shows <OVER>.

3.5 Repetition Angle Measurement

Repetition angle measurement can be done by horizontal angle right measurement mode.
Make sure the mode is Horizontal Angle Right measurement.

Operating procedure	Operation	Display
1 Press the $\{F 4\}(\downarrow)$ key to get the function on page 2.	\{F4\}	$\begin{aligned} & \text { V : } 90^{\circ} 10^{\prime} 20^{\prime \prime} \\ & \text { HR: } 170^{\circ} 30^{\prime} 20^{\prime \prime} \\ & \text { OSET HOLD HSET P1 } \downarrow \end{aligned}$
		TILT REP V\% P2 \downarrow
2 Press the \{F2\} (REP)key.	\{F2\}	REPETITION ANGLE $>\mathrm{OK}$?
		--- --- [YES] [NO]
3 Press the \{F3\} (YES) key.	\{F3\}	REP-ANGLE COUNT [0] Ht: $\quad 0^{\circ} 0^{\prime} 0^{\prime} 00{ }^{\prime \prime}$ Hm: OSET V/H REL HOLD
4 Collimate the target A and press the $\{F 1\}$ (0SET) key.	$\begin{aligned} & \text { Collimate A } \\ & \{\mathrm{F} 1\} \end{aligned}$	REPETITION ANGLE INITIALIZE >OK? [YES] [NO]
5 Press the \{F3\} (YES) key.	\{F3\}	REP-ANGLE COUNT [0] Ht: $0^{\circ} 00^{\prime} 00 "$ Hm: OSET V/H
6 Collimate the target B using the horizontal clamp and tangent screw. Press the \{F4\} (HOLD) key.	$\begin{aligned} & \text { Collimate B } \\ & \{F 4\} \end{aligned}$	REP-ANGLE COUNT[1] Ht: $45^{\circ} 10^{\prime} 00 \prime$ Hm: $45^{\circ} 10^{\prime} 00^{\prime \prime}$ OSET V / H REL HOLD

7 Recollimate target A using the horizontal clamp and tangent screw, and press the \{F3\} (REL)key.

8 Recollimate target B using the horizontal clamp and tangent screw, and press the \{F4\} (HOLD) key.

9 Repeat 7 to 8 to measure the desired number of repetitions.

10 To return to the normal angle mode, press the \{F2\} (V/H) key or \{ESC\} key.

11 Press the $\{F 3\}$ (YES) key.
reptions.

11 Press the \{F3\}(YES)key.

Collimate A \{F3\}

Collimate B \{F4\}
\{ESC\}
or
\{F2\}
\{F3\}

```
```

REP-ANGLE COUNT [1]

```
```

REP-ANGLE COUNT [1]
Ht: 45*'10'00"
Ht: 45*'10'00"
Hm: 45*'10'00"
Hm: 45*'10'00"
OSET V/H REL HOLD

```
```

OSET V/H REL HOLD

```
```

REP-ANGLE		COUNT [2]
Ht:	$90^{\circ} 20^{\prime} 00^{\prime \prime}$	
Hm:	$45^{\circ} 10^{\prime} 00^{\prime \prime}$	
OSET	V / H	REL HOLD

REP-ANGLE	COUNT [4]
Ht:	$180^{\circ} 40^{\prime} 00^{\prime \prime}$
Hm:	$45^{\circ} 10^{\prime} 00^{\prime \prime}$
OSET	V/H

[Example] 4 measurement

REP-ANGLE COUNT [4]
Ht: $180^{\circ} 40^{\prime} 00^{\prime \prime}$
OSET V/H REL HOLD
[Example] 4 measurement
Exit
>OK?
V : $\quad 90^{\circ} 10^{\prime} 20^{\prime \prime}$
OSET HOLD HSET P1 \downarrow

- Horizontal angle can be accumulated up to ($3600^{\circ} 00^{\prime} 00^{\prime \prime}$ - minimum reading) (horizontal angle right). In case of 5 second reading, horizontal angle can be accumulated up to $+3599^{\circ} 59^{\prime} 55^{\prime \prime}$.
- Error will be displayed when the results differ from first measurement by more than ± 30 ".

3.6 Buzzer Sounding for Horizontal Angle $\mathbf{9 0}^{\circ}$ Increments

When the horizontal angle falls in the range of less than $\pm 1^{\circ}$ of $0^{\circ}, 90^{\circ}, 180^{\circ}$ or 270°, the buzzer sounds. Buzzer stops only when the horizontal angle is adjusted to $0^{\circ} 00^{\prime} 00^{\prime \prime}, 90^{\circ} 00^{\prime} 00^{\prime \prime}, 180^{\circ} 00^{\prime} 00^{\prime \prime}$ or 2700ㅇㅇㅣ".
This setting is not memorized after powering off. 收 Refer to 17 "SELECTING MODE" to set the initial setting (memorized after powering off).
Make sure the mode is Angle measurement.

Operating procedure	Operation	Display
1 Press the $\{\mathrm{F} 4\}(\downarrow)$ key twice to get the function on page 3.	\{F4\} twice	V : $90^{\circ} 10^{\prime} 20 "$ HR: $170^{\circ} 30^{\prime 2} 20^{\prime \prime}$ OSET HOLD HSET P1 \downarrow
		H-BZ R/L CMPS P3 \downarrow
2 Press the \{F1\} (H-BZ) key. The data previously set is shown.	\{F1\}	H-ANGLE BUZZER [OFF] [ON] [OFF] --- ENTER

3 Press the \{F1\} (ON) key or \{F2\} (OFF) key to select the buzzer ON/OFF.

4 Press the \{F4\} (ENTER) key.
\{F4\}

```
H-ANGLE BUZZER [ON] [ON] [OFF] --- ENTER
```

```
V : 90*10'20
HR: 170%30'20"
```


3.7 Compasses (vertical angle)

Vertical angle is displayed as shown below.

4 DISTANCE MEASUREMENT

\triangle CAUTION

－When using the Laser－pointer function，be sure to turn OFF the output laser after distance measurement is completed．Even if distance measurement is canceled，the Laser－pointer function is still operating and the laser beam continues to be emitted．
－Make sure that the target setting on the instrument matches the type of target used．GM automatically adjusts the intensity of the laser beam and switches the distance measurement display range to match the type of target used．If the target does not correspond to the target settings，accurate measurement results cannot be obtained．
－Accurate measurement results cannot be obtained if the objective lens is dirty．Dust it off with the lens brush first，to remove minute particles．Then，after providing a little condensation by breathing on the lens，wipe it off with the silicon cloth．
－During reflectorless measurement，if an object obstructs the light beam used for measurement or an object is positioned with a high reflective factor（metal or white surface）behind the target， accurate measurement results may not be received．
－Scintillation may affect the accuracy of distance measurement results． Should this occur，repeat measurement several times and use the averaged value of the obtained results．

－Target type（Prism mode／Non－prism Mode（Reflectorless mode）／Sheet mode）

Measurement mode can be selected depending on the object to measure；Prism mode，Non－prism mode（objects other than prism），and Sheet mode．
－Regardless of whether the laser pointer is used，measurement is possible with both the Non－prism mode，Sheet mode and the Prism mode．That is，when the GM is used in the open air，in an urban area，etc．，the laser pointer can be stopped and distance measurement then conducted，making it possible to prevent the laser light from hitting a third party．
－For measurement with a prism，be sure to measure with the Prism mode．If you measure with the Non－prism mode and Sheet mode accuracy cannot be guaranteed．
－Non－prism mode enable all distance measurements such Distance measurement，Coordinate measurement，Offset measurement and Layout．
－To switch over Prism mode to Non－prism mode or Sheet mode，press the［NP／P］soft key in each measurement display．
When selecting Non－prism mode or Sheet mode，the icon on the right side of the screen indicates the currently selected mode．
［ $\left.\begin{array}{c}\mathrm{N} \\ \mathrm{P}\end{array}\right]$ ：Non－prism mode
［ $⿴ 囗 十$ ］：Sheet mode
Changing mode shall be done before measurement．

Example Distance measurement mode

HR：	$120^{\circ} 30 \cdot 40 "$	
HD＊	$65.432 \mathrm{~m}^{\mathrm{N}} \mathrm{P}$	
VD：	12.345 m	Non－prism mode
MEAS	MODE	NP／P P1 \downarrow
indicator		

Coordinate measurement mode

N ：		120.456	m
E：		34.567	m^{N} P
Z：		12.345	m
MEAS	MODE	E NP／P	P1 \downarrow

To change the mode，press the［NP／P］soft key in each measurement．
－It is possible to set Non－prism mode for distance measurement during the power on time．पア Refer to 17 ＂SELECTING MODE＂to set the option．
－When collimating a near distance prism in Non－prism mode，measurement may not be performed because of too much light．

4.1 Setting of the Atmospheric Correction

When setting the atmospheric correction, obtain the correction value by measuring the temperature and pressure. \mathbb{C} Refer to Section 12.2 "Setting of Atmospheric Correction Value".

4.2 Setting of the Correction for Prism Constant

Topcon's prism constant value is 0 . Set correction for prism at 0 . If the prism is of another manufacture, the appropriate constant shall be set beforehand. [J 3 Refer to Chapter 11 "SETTING THE PRISM CONSTANT VALUE". The setting value is kept in the memory even after power is off.

- Prism constant correction value should be set for each measuring mode. Confirm that Non-prism correction value is set at zero before measurement target such as a wall in Non-prism mode or Sheet mode.

4.3 Distance Measurement (Continuous Measurement)

Make sure the mode displays angle measurement.

	Operating procedure	Operation	Display
	Collimate the center of prism.	Collimate P	$\begin{aligned} & \text { V : } 90^{\circ} 10^{\prime} 20^{\prime \prime} \\ & \text { HR: } 120^{\circ} 30^{\prime} 40^{\prime \prime} \\ & \text { OSET HOLD HSET P1 } \downarrow \end{aligned}$
2	Press the $\{\triangle\}$ key. Distance measurement starts. *1),2)	\{	HR: $120^{\circ} 30^{\prime} 40 "$ HD* [r] \ll m VD: m MEAS MODE NP/P P1 \downarrow
	The measured distances are shown. *3) ~*5)		HR: $120^{\circ} 30.40 "$ HD* 123.456 m VD: 5.678 m MEAS MODE NP/P P1 \downarrow
	Pressing the \{ \qquad \} key again, the display changes to horizontal (HR) and vertical (V)angle and slope distance(SD). *6)	\{ L $]$	V : $90^{\circ} 10^{\prime} 20 "$ HR: $120^{\circ} 30^{\prime} 40 \prime$ SD* 131.678 m MEAS MODE
1) When EDM is working, the "" mark appears in the display. *2) 收 To change mode from Fine to Coarse or Tracking, refer to section 4.5 "Fine Mode/Tracking Mode/ Coarse Mode". $\mathbb{\int} 3$ To set the distance measurement on when the instrument is powered on, refer to Chapter 17 "SELECTING MODE". *3) The distance unit indicator "m" (for meter), " f " (for feet or feet inch) appears and disappears alternatively with buzzer sounds at every renewal of distance data. *4) Measurement may repeat automatically in the instrument if the result is affected by shimmer etc. ${ }^{*} 5$) To return to the normal measuring angle mode from a distance measuring mode, press the \{ANG\} key. *6) It is possible to choose the display order (HR, HD, VD) or (V, HR, SD) for initial distance measuring mode. [ア			

4.4 Distance Measurement (N-time Measurement/Single Measurement)

When the number of times measurement is preset, the GM measures the distance the set number of times. The average distance will be displayed.
When presetting the number of times as 1 , it does not display the average distance, because of single measurement. Single measurement is set at the factory.

Make sure the mode displays angle measurement.

Operating procedure	Operation	Display
1 Collimate the center of prism.		V : $90^{\circ} 10^{\prime} 20^{\prime \prime}$ HR: $120^{\circ} 30^{\prime} 40^{\prime \prime}$ OSET HOLD HSET P1 \downarrow
2 Press the $\{\mid\}$ key. Continuous measuring starts.*1)	\{ 1 \|	HR: $120^{\circ} 30^{\prime} 40 "$ HD*[r] $\ll m$ VD: m MEAS MODE NP/P P1 \downarrow
3 Press \{F1\} (MEAS) key while continuous measuring is exceeding. *2) The average value is displayed and "*" mark disappears.	\{F1\}	HR: $120^{\circ} 30^{\prime} 40 "$ HD*[n] $\ll m$ VD: m MEAS MODE NP/P P1 \downarrow
- While EDM is working, press $\{$ F1\} (MEAS) key again, the mode will be changed to continuous measuring mode.		HR: $120^{\circ} 30^{\prime} 40 "$ HD: 123.456 m VD: 5.678 m MEAS MODE \quad NP/P P1 \downarrow

*1) It is possible to set the measurement mode for N -times measurement mode or continuous measurement mode when the power is turned on. [Fヨ Refer to Chapter 17 "SELECTING MODE".
*2) 的 3 For setting the number of times (N -times) in the measurement, refer to Chapter 17 "SELECTING MODE".

- Choose meter /feet / feet+inch unit by soft key

It is possible to change the unit for distance measurement mode by soft key. This setting is not memorized after power off. \mathbb{C} initial setting (memorized after power off).

Operating procedure	Operation	Display
1 Press the \{F4\} (P1 \downarrow) key twice to get the function on page 3.	\{F4\}	HR: $120^{\circ} 30.40 \mathrm{l}$ HD* 2.000 m VD: 3.000 m MEAS MODE NP/P P1 \downarrow
		OFSET S.O S/A P2 \downarrow
		---m/f/i --- P3 \downarrow
2 Press the $\{\mathbf{F} 2\}(\mathrm{m} / \mathrm{f} / \mathrm{i})$ key, the display unit will be changed. Every time pressing the $\{\mathbf{F} \mathbf{2}\}(\mathrm{m} / \mathrm{f} / \mathrm{i})$ key, the unit mode switches.	\{F2\}	

4.5 Fine Mode/Tracking Mode/Coarse Mode

This setting is not memorized after power is off.
\mathbb{B} Refer to Chapter 17 "SELECTING MODE" to set at the initial setting (memorized after power is off).
Fine Mode : This is a normal distance measuring mode.
The unit to be displayed can be changed.
Measurement time will vary depending on the unit to be displayed.
Tracking Mode: This mode measures in shorter time than in fine mode.
It is very useful when tailing the moving object or carrying out stake-out work. When target type is set to "Non-prism" and by selecting the dedicated distance mode, you can sight road surface etc. obliquely to obtain rough measurement values.
馆 6.4.9 "NP-TRK MODE Setting"
Coarse Mode : This mode measures in shorter time than in fine mode.
The unit to be displayed can be changed.
$\mathbb{\square}$ 实 To change the unit to be displayed in fine mode, see Chapter 17 "SELECTING MODE" and to change the unit in coarse mode, see section 6.4.1 "Setting Minimum Reading".
\mathbb{W} For the details of the unit and measurement time in each mode, see Chapter 24
"SPECIFICATIONS".

| Operating procedure | Operation | |
| :--- | :---: | :---: | :---: |

4.6 Stake Out (S.O)

The difference between the measured distance and the input stake out distance is displayed. Measured distance - Stake out distance = Displayed value In stake out operation, you can select either horizontal distance (HD), relative elevation (VD) and slope distance (SD)

\begin{tabular}{|c|c|c|c|}
\hline \& Operating procedure \& Operation \& Display \\
\hline \multirow[t]{2}{*}{} \& Press the \(\{F 4\}(\downarrow)\) key in the distance measuring mode to get the function on page 2 . \& \{F4\} \& \[
\begin{array}{|lrl|}
\hline \text { HR : } \& 120^{\circ} 30^{\prime} 40 \mathrm{l} \\
\text { HD* } \& 123.456 \mathrm{~m} \\
\text { VD: } \& 5.678 \mathrm{~m} \\
\text { MEAS } \& \text { MODE } \& \text { NP } / \mathrm{P}
\end{array}
\] \\
\hline \& \& \& OFSET S.O S/A P2 \(\downarrow\) \\
\hline \multirow[t]{2}{*}{2} \& \begin{tabular}{l}
Press the \{F2\} (S.O) key. \\
The data previously set is shown.
\end{tabular} \& \{F2\} \& \[
\begin{aligned}
\& \text { STAKE OUT } \\
\& \text { HD : } 0.000 \mathrm{~m}
\end{aligned}
\] \\
\hline \& \& \& HD VD SD --- \\
\hline \multirow[t]{2}{*}{} \& Select the measuring mode by pressing the \(\{\mathrm{F} 1\}\) to \(\{\mathrm{F} 3\}\) key. \& \{F1\} \& \[
\begin{aligned}
\& \text { STAKE OUT } \\
\& \text { HD }=0.000 \mathrm{~m}
\end{aligned}
\] \\
\hline \& Example: Horizontal distance \& \& --- --- [CLR] [ENT] \\
\hline \multirow[t]{2}{*}{4} \& Enter the distance for stake out. *1) \& Enter data \{F4\} \& \[
\begin{aligned}
\& \text { STAKE OUT } \\
\& \text { HD : } 100.000 \mathrm{~m}
\end{aligned}
\] \\
\hline \& \& \& INPUT --- --- ENTER \\
\hline \multirow[t]{3}{*}{5

6} \& Collimate the target (Prism).

Measuring starts. \& Collimate P \& $$
\begin{array}{|lcc}
\hline \text { HR: } 120^{\circ} 30^{\prime} 40^{\prime \prime} & \\
\text { dHD*[r] } & \ll & \mathrm{m} \\
\text { VD : } & & \mathrm{m} \\
\text { MEAS MODE } & \text { NP } / \mathrm{P} & \mathrm{PI} \downarrow
\end{array}
$$

\hline \& The difference between the measured distance \& \& \downarrow

\hline \& | and the stake out distance is displayed. |
| :--- |
| Move the target until the difference becomes 0 m . | \& \& | HR: | $120^{\circ} 30^{\prime} 40 "$ | |
| :--- | ---: | ---: |
| dHD* | 23.456 | m |
| VD: | 5.678 | m |
| MEAS | MODE | NP $/ \mathrm{P}$ | P1 \downarrow

\hline \multicolumn{3}{|l|}{*1) [.3 Refer to section 2.4 "How to Enter Alphanumeric Characters".} \&

\hline
\end{tabular}

4.7 Offset Measurement

There are four offset measurement modes in the Offset Measurement.

- Angle offset
- Distance offset
- Plane offset
- Column offset

To show the offset measurement menu, press the [OFSET] soft key from distance or coordinate measurement mode.

Example:

Distance measurement

Coordinate measurement

Offset Measurement Menu

OFFSET	$1 / 2$	
F1: ANG. OFFSET		
F2: DIST. OFFSET		
F3: PLANE OFFSET	P \downarrow	
OF4\}		
F1: COLUMN OFFSET		
		$2 / 2$

- Outputting the Measurement Data

The results of offset measurement can be output to external device.
Setting the function of the \{ESC $\}$ key to (REC), the \{F3\} soft key which assigned (REC) will appear in measured result display.
吗 Refer to Chapter 17 "SELECTING MODE" to set this option.

- Distance measurement mode of the offset measurement

Offset measurement will be done by N -time fine measurement mode.
栲 For setting measuring times refer to Chapter 17 "SELECTING MODE".

4.7.1 Angle Offset

This mode is useful when it is difficult to set up the prism directly, for example at the center of a tree. Place the prism at the same horizontal distance from the instrument as that of point A_{0} to measure. To measure the coordinates of the center position, operate the offset measurement after setting the instrument height/prism height.

When measuring coordinates of ground point A_{1} :Set the instrument height/prism height.

When measuring coordinates of point A_{0} : Set the instrument height only. (Set the prism height to 0).

You can choose the vertical angel setting when sighting A0 from "Hold" or "Free". "Hold" is the setting to fix the vertical angle regardless of telescope direction. When "Free" is selected, the vertical angle value varies in conjunction with the telescope direction and SD (Slope Distance) and VD (Vertical Distance) are updated on a real-time basis.
$\mathbb{\square}$ To set this option, refer to Chapter 17
"SELECTING MODE".

Note

- Set the instrument height/prism height before proceeding to the offset measurement mode.
- When setting the coordinate value for the occupied station, refer to Section 5.1 "Setting Coordinate Values of Occupied Point".

Operating procedure	Operation	Display
1 Press the $\{\mathrm{F} 4\}$ ($\mathrm{P} 1 \downarrow$) key from distance measuring mode to get the function on page 2.	\{F4\}	
2 Press the \{F1\} (OFSET) key.	\{F1\}	OFFSET $1 / 2$ F1:ANG.OFFSET F2:DIST.OFFSET F3: PLANE OFFSET P1 \downarrow
3 Press the $\{\mathrm{F} 1\}$ (ANG. OFFSET) key.	\{F1\}	
4 Collimate prism P, and press the \{F1\} (MEAS) key.	Collimate P \{F1\}	```OFFSET-MEASUREMENT HR: 110*20'30" HD* [n] << m >Measuring...```

The horizontal distance from the instrument to the prism will be measured.

5 Collimate point A_{0} using the horizontal motion clamp and horizontal tangent screw.

6 Press the $\{\leq$ key, to switch the distance display to VD (relative elevation of point A_{0}).

7 Press the $\{\Delta\}$ key, to switch the distance display to SD (slope distance).

- Each time pressing the $\{\mid\}$ key, horizontal distance, relative elevation and slope distance are shown in sequence.

8 Press the $\{\breve{\square}\}$ key, to switch the distance display to N (N coordinate of point A_{0} or A_{1}).

- Each time pressing $\{\underset{\sim}{\longrightarrow}$? $\}$ key, N, E and Z coordinate are shown in sequence.
- To return to procedure 4, press the \{F1\} (NEXT) key.
- To return to the previous mode, press the \{ESC $\}$ key.
- Press the $\{\mathrm{F} 3\}(\mathrm{NP} / \mathrm{P})$ key after the step 3 to change target type.

4.7.2 Distance Offset Measurement

The measurement of a place apart from a prism is possible by inputting offset horizontal distance of front and back / right and left.

When measuring coordinates of ground point A_{1} : Set the instrument height / prism height.
When measuring coordinates of point A_{0} : Set the instrument height only.
(Set the prism height to 0).

After the measurement, the result which includes offset value will be shown.

7 Show the relative elevation of point P0.

- Each time pressing the $\{$ | $\}$ key, horizontal distance, relative elevation and slope distance are shown in sequence.
- Show coordinate of point P0.

```
DISTANCE OFFSET
    HR: 80`30'40"
    HD* 10.000 m
NEXT --- --- ---
```

DISTANCE OFFSET	
HR:	$80^{\circ} 30^{\prime} 40 \prime$
VD:	11.789 m
NEXT	$-\mathbf{n}^{\prime}$

DISTANCE OFFSET
HR:
SD:
NEXT
NO

DISTANCE OFFSET
HR: $80^{\circ} 30^{\prime \prime} 40^{\prime \prime}$
NEXT
$\mathrm{N}: \quad 12.345 \mathrm{~m}$
23.345 m
Z :
1.345 m
NEXT --- --- --

- To return to procedure 4, press \{F1\} (NEXT) key.
- To return to the previous mode, press \{ESC\} key.
- Press the $\{\mathrm{F} 3\}(\mathrm{NP} / \mathrm{P})$ key after the step 3 to change target type.

4.7.3 Plane Offset Measurement

Measuring will be taken for the place where direct measuring can not be done, for example distance or coordinate measuring for a edge of a plane.
Three random prism points ($\mathrm{P} 1, \mathrm{P} 2, \mathrm{P} 3$) on a plane will be measured at first in the plane offset measurement to determine the measured plane. Collimate the measuring target point (P0) then the instrument calculates and displays coordinate and distance value of cross point between collimation axis and of the plane.

When setting the coordinate value for the occupied station, refer to Section 5.1 "Setting Coordinate Values of Occupied Point".

Example: Non-prism measurement

Operating procedure	Operation	Display
1 Press the $\{\mathrm{F} 4\}$ ($\mathrm{P} 1 \downarrow$) key from distance measuring mode to get the function on page 2.	\{F4\}	
2 Press the \{F1\} (OFSET) key.	\{F1\}	OFFSET $1 / 2$ F1: ANG. OFFSET F2: DIST. OFFSET F3: PLANE OFFSET P \downarrow
3 Press the \{F3\} (PLANE OFFSET) key.	\{F3\}	
4 Press the $\{F 3\}(N P / P)$ key to change to the Nonprism mode.	\{F3\}	PLANE NO01\# : N_{P} SD: m MEAS $-\mathrm{NP}^{2}$
5 Collimate first point P1, and press the \{F1\} (MEAS) key. N -time measuring will start. After measuring, the display will show the second point measurement.	$\begin{gathered} \text { Collimate } \\ \text { P1 } \\ \{F 1\} \end{gathered}$	

6 Measure the second and third points in the same way.

The instrument calculates and displays coordinate and distance value of cross point between collimation axis and of the plane. *1), 2)

7 Collimate the edge (P0) of the plane. *3), 4)

8 To show the slope distance (SD), press the \{ $\}$ key.

- Each time pressing the $\{\mid\}$ key, horizontal distance, relative elevation and slope distance are

Collimate P2
$\{\mathrm{F} 1\}$
Polimate
$\{F 1\}$

Collimate PO

shown in sequence.

- To show coordinate of point PO, press the $\{\nsucceq\}$ key.

9 To escape the measuring, press the \{F1\} (EXIT) key. The display returns to the previous mode.
*1) In case the calculation of plane was not successful by the measured three points, error displays. Start measuring over again from the first point.
*2) The data is displayed in the mode selected before entering the offset measurement mode.
*3) Error will be displayed when collimated to the direction which does not cross with the determined plane.
*4) The point height of the target point P0 is set to zero automatically.

4.7.4 Column Offset Measurement

If it is possible to measure circumscription point (P1) of column directly, the distance to the center of the column (P0), coordinate and direction angle can be calculated by measured circumscription points (P2) and (P3).
The direction angle of the center of the column is $1 / 2$ of total direction angle of circumscription points (P2) and (P3).

When setting the coordinate value for the occupied station, refer to Section 5.1 "Setting Coordinate Values of Occupied Point".

Example: Non-prism measurement

Operating procedure	Operation	Display
1 Press the $\{\mathbf{F} 4\}$ (P1 \downarrow) key from distance measuring mode to get the function on page 2.	\{F4\}	HR: $120^{\circ} 30^{\prime} 40 \prime$ HD: 123.456 m VD: 5.678 m MEAS MODE NP/P P1 \downarrow OFSET S O S/A
		$\begin{array}{llll}\text { OFSET S.O } & \text { S/A } & \text { P2 } \downarrow\end{array}$
2 Press the \{F1\} (OFSET) key.	\{F1\}	OFFSET $1 / 2$ F1:ANG. OFFSET F2: DIST. OFFSET F3: PLANE OFFSET P \downarrow
3 Press the \{F4\} (P \downarrow) key.	\{F4\}	OFFSET $\quad 2 / 2$ F1: COLUMN OFFSET
		$\mathrm{P} \downarrow$
4 Press the $\{\mathrm{F} 1\}$ (COLUMN OFFSET) key.	\{F1\}	COLUMN OFFSET Center HD: MEAS -- \quad NP/P \quad - -
5 Press the $\{F 3\}$ (NP/P) key to change to the Nonprism mode.	\{F3\}	

6 Collimate the center of the column (P1) and press the $\{F 1\}$ (MEAS) key.
N -time measuring will start.
After the measurement, angle measuring display of the left side (P2) will be shown.

7 Collimate the left side of the column (P2) and press the \{F4\} (SET) key.
After the measurement, angle measuring display of the right side (P3) will be shown.

8 Collimate the right side of the column (P3) and press the \{F4\} (SET) key.

The distance between the instrument and center of the column (PO) will be calculated.

9 To show the relative elevation (VD), press the \{ $\$] key.
Each time pressing the $\{\leq \mid\}$ key, horizontal distance, relative elevation and slope distance are shown in sequence.

- To show coordinate of point P0, press the $\left\{\iota_{\longrightarrow}\right\}$ key.
10 To escape the measuring, press the \{ESC\} key. The display returns to the previous mode.

Collimate
P1 \{F1\}

COLUMN OFFSET Center N_{P} HD* [n] << m >Measuring...

Collimate P2 \{F4\}
 P3 \{F4\}

\square

5 COORDINATE MEASUREMENT

5.1 Setting Coordinate Values of Occupied Point

By setting the coordinates of the instrument (occupied point) based on the coordinate origin, the unknown point (prism point) coordinates based on the coordinate origin are calculated and displayed. It is possible to retain the coordinates of the occupied point after turning the power off.
[J Refer to Chapter 17 "SELECTING MODE".

Operating procedure	Operation	Display
1 Press the $\{F 4\}(\downarrow)$ key from the coordinate measurement mode to get the function on page 2.	\{F4\}	N: 123.456 m $\mathrm{E}:$ 34.567 m Z: 78.912 m MEAS MODE NP/P P1 \downarrow R.HT INSHT OCC
2 Press the $\{F 3\}$ (OCC) key.	\{F3\}	$\begin{array}{\|cc\|}\mathrm{N}= & 0.000 \mathrm{~m} \\ \mathrm{E}: & 0.000 \mathrm{~m} \\ \mathrm{Z}: & 0.000 \mathrm{~m} \\ ---- & \text { [CLR] } \\ \text { [ENT] }\end{array}$
3 Enter N coordinate value. *1)	Enter data $\{\mathrm{F} 4\}$	$\left.\begin{array}{\|cr\|}\hline \mathrm{N}: & -72.000 \mathrm{~m} \\ \mathrm{E}= & 0.000 \mathrm{~m} \\ \mathrm{Z}: & 0.000 \mathrm{~m} \\ ---\mathrm{-} & -\mathrm{lCLR}]\end{array} \mathrm{[ENT}\right]$
4 Enter E and Z coordinate values in the same manner. After entering the values, the display returns coordinate measuring display.		$\mathrm{N}:$ 51.456 m $\mathrm{E}:$ 34.567 m $\mathrm{Z}:$ 78.912 m MEAS MODE NP/P
*1) 目 Refer to Section 2.4 "How to Enter Alphanumeric Characters".$\begin{array}{rl} \text { Input range } & -99999999.9999 \leqq N, E, Z \leqq 99999999.9999 \mathrm{~m} \\ & -99999999.999 \\ & -99999999.11 .7 \leqq N, E, Z \leqq 99999999.999 \mathrm{ft} . \\ , \mathrm{Z}, \mathrm{Z} & 99999999.11 .7 \mathrm{ft.}+\mathrm{inch} \end{array}$		

5．2 Setting Height of the Instrument

It is possible to retain the height of instrument after turning the power off．
［ 3 Refer to Chapter 17 ＂SELECTING MODE＂．

Operating procedure	Operation	Display
1 Press the $\{F 4\}(\downarrow)$ key from the coordinate measurement mode to get the function on page 2.	\｛F4\}	N： 123.456 m E： 34.567 m Z： 78.912 m MEAS MODE NP／P P1 \downarrow R．HT INSHT OCC P2 \downarrow
2 Press the \｛F2\} (INSHT) key. The current value is displayed．	\｛F2\}	INSTRUMENT HEIGHT INPUT INS．HT $=0.000 \mathrm{~m}$ $---\quad--\quad[C L R] \quad$［ENT］
3 Enter the instrument height．＊1）	Enter Inst． HT $\{F 4\}$	$\mathrm{N}:$ 123.456 m $\mathrm{E}:$ 34.567 m $\mathrm{Z}:$ 78.912 m MEAS MODE NP／P

＊1）㜿 Refer to Section 2.4 ＂How to Enter Alphanumeric Characters＂．
－Input range－999．9999 § Instrument height $\leqq 999.9999 \mathrm{~m}$
$-999.999 \leqq$ Instrument height $\leqq 999.999 \mathrm{ft}$ ．
－999．11．7 \leqq Instrument height $\leqq 999.11 .7 \mathrm{ft} .+$ inch

5．3 Setting Height of Target（Prism Height）

This mode can be used to obtain Z coordinate values．It is possible to retain the height of target after turning the power off．［FB Refer to Chapter 17 ＂SELECTING MODE＂．

Operating procedure	Operation	Display
1 Press the $\{F 4\}(\downarrow)$ key from the coordinate measurement mode to get the function on page 2.	\｛F4\}	$\mathrm{N}:$ 123.456 m $\mathrm{E}:$ 34.567 m $\mathrm{Z}:$ 78.912 m MEAS MODE NP／P P1 \downarrow
		R．HT INSHT OCC P2 \downarrow
2 Press the $\{\mathrm{F} 1\}$（R．HT）key． The current value is displayed．	\｛F1\}	REFLECTOR HEIGHT INPUT R．HT $=0.000 \mathrm{~m}$ $---\quad[\mathrm{-}$
3 Enter the prism height．＊1）	Enter R．HT \｛F4\}	$\mathrm{N}:$ 123.456 m $\mathrm{E}:$ 34.567 m $\mathrm{Z}:$ 78.912 m MEAS MODE NP／P P1 \downarrow

＊1）【ア Refer to Section 2.4 ＂How to Enter Alphanumeric Characters＂．
－Input range－999．9999 § Prism height $\leqq 999.9999 \mathrm{~m}$

$$
\begin{aligned}
& -999.999 \leqq \text { Prism height } \leqq 999.999 \mathrm{ft} . \\
& -999.11 .7 \leqq \text { Prism height } \\
& \hline
\end{aligned} 999.11 .7 \mathrm{ft} .+\mathrm{inch} \text {. }
$$

5．4 Execution of Coordinate Measuring

Measure the coordinates by entering the instrument height and prism height，coordinates of unknown point will be measured directly．

When setting coordinate values of occupied point，see Section 5.1 ＂Setting Coordinate Values of Occupied Point＂
家 When setting the instrument height and prism height，see Section 5.2 ＂Setting Height of the Instrument＂and 5.3 ＂Setting Height of Target（Prism Height）＂．

The coordinates of the unknown point are calculated as shown below and displayed：

$$
\begin{aligned}
& \text { Coordinates of occupied point }:\left(N_{0}, E_{0}, Z_{0}\right) \\
& \text { Instrument height }: \text { INS.HT } \\
& \text { Prism height } \quad: \text { R.HT } \\
& \text { Vertical distance (Relative elevation) }: z(V D) \\
& \text { Coordinates of the center of the prism, } \\
& \text { originated from the center point of the instrument }:(n, e, z) \\
& \text { Coordinates of unknown point : }\left(\mathrm{N}_{1}, \mathrm{E}_{1}, \mathrm{Z}_{1}\right) \\
& \quad \mathrm{N}_{1}=\mathrm{N}_{0}+\mathrm{n} \\
& \mathrm{E}_{1}=\mathrm{E}_{0}+\mathrm{e} \\
& \mathrm{Z}_{1}=\mathrm{Z}_{0}+I N S . H T+z-\text { R.HT }
\end{aligned}
$$

Coordinates of the center of the prism，originated from the center point of the instrument（ $n, \mathrm{e}, \mathrm{z}$ ） \qquad

Center point of the instrument

＊1）【予 Refer to Section 3.3 ＂Measuring from the Required Horizontal Angle＂．
－In case the coordinate of instrument point is not entered，$(0,0,0)$ will be used as the default for the instrument point．
The instrument height will be calculated as 0 when the instrument height is not entered．
－The prism height will be calculated as 0 when the prism height is not set．

6 SPECIAL MODE (Menu Mode)

By pressing the \{MENU\} key, the instrument will be in MENU mode. In this mode, special measuring, setting and adjustment are possible.

6.1 Application Measurement (PROGRAMS)

6.1.1 Remote Elevation measurement (REM)

To obtain elevation of the point at which setting the target prism is not possible, place the prism at any point on the vertical line from the target then carry out REM procedure as follows.

1) With prism height (h) input (Example:h=1.5 m)

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(P \downarrow)$ key to get the menu on page 2.	\{MENU\} \{F4\}	MENU $2 / 4$ F1: MEMORY MGR. F2: PROGRAMS F3: GRID FACTOR P \downarrow
2 Press the \{F2\} key.	\{F2\}	PROGRAMS $1 / 2$ F1: REM F2: MLM F3: Z COORD. P \downarrow
3 Press the \{F1\} (REM) key.	\{F1\}	REM F1:INPUT R.HT F2:NO R.HT
4 Press the $\{\mathrm{F} 1\}$ key.	\{F1\}	
5 Enter prism height. *1)	$\begin{aligned} & \text { Enter R.HT } \\ & \{\text { F4\} } \end{aligned}$	$$
6 Collimate prism.	Collimate P	
7 Press the \{F1\} (MEAS) key. Measuring starts.	\{F1\}	```REM-1 <STEP-2> HD*[n] << m >Measuring...```

Horizontal distance (HD) between the instrument and prism will be shown.

8 Collimate target K.
Vertical distance (VD) will be shown. *2),3)

REM-1
<STEP-2>
HD* 123.456 m
>Measuring...
\downarrow
REM-1
VD: 1.500 m
--- R.HT HD
Collimate K

REM-1
VD: 10.456 m
--- R.HT HD ---
*1) 【ア Refer to Section 2.4 "How to Enter Alphanumeric Characters".
$\left.{ }^{*} 2\right)$ To return to procedure 5 , press the $\{\mathrm{F} 2\}(\mathrm{R} . \mathrm{HT})$ key.
To return to procedure 6, press the $\{\mathrm{F} 3\}(\mathrm{HD})$ key.
*3) To return to PROGRAMS Menu, press the \{ESC\} key.
2) Without prism height input

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(\mathrm{P} \downarrow)$ key to get the menu on page 2.	\{MENU\} \{F4\}	MENU $2 / 4$ F1: MEMORY MGR. F2: PROGRAMS F3: GRID FACTOR P \downarrow
2 Press the \{F2\} key.	\{F2\}	PROGRAMS $1 / 2$ F1: REM F2:MLM F3: Z COORD. P \downarrow
3 Press the \{F1\} (REM) key.	\{F1\}	$\begin{aligned} & \text { REM } \\ & \text { F1:INPUT R.HT } \\ & \text { F2: NO R.HT } \end{aligned}$
4 Press the $\{\mathrm{F} 2\}$ key.	\{F2\}	REM-2 <STEP-1> HD: m MEAS $--\quad$ NP/P
5 Collimate prism.	Collimate P	
6 Press the \{F1\} (MEAS) key. Measuring starts.	\{F1\}	```REM-2 <STEP-1> HD* [n] << m >Measuring...```
Horizontal distance (HD) between the instrument and prism will be shown.		```REM-2 <STEP-1> HD* 123.456 m >Measuring...```

The prism position will be decided.		```REM-2 <STEP-2> V : 60*45'50" SET```
7 Collimate ground point G.	Collimate G	```REM-2 <STEP-2> V : 123*45'50" SET```
8 Press the \{F4\} (SET) key. The position of point G will be decided. *1)	\{F4\}	$\begin{array}{\|cccc} \begin{array}{ccc} \text { REM-2 } \\ \text { VD: } & 0.000 \mathrm{~m} \\ --- & \mathrm{V} & \mathrm{HD} \end{array} \quad--- \end{array}$
9 Collimate target K. Vertical distance (VD) will be shown. *2)	Collimate K	$\begin{array}{cc} \text { REM-2 } \\ \text { VD: } & 10.456 \mathrm{~m} \\ & \\ \text {--- } & \mathrm{V} \\ \mathrm{HD} \end{array}$
*1) To return to procedure 5 , press the $\{\mathrm{F} 3\}(\mathrm{HD})$ key. To return to procedure 7, press the $\{\mathrm{F} 2\}(\mathrm{V})$ key. *2) To return to PROGRAMS Menu, press the $\{E S C\}$ k		

6.1.2 Missing Line Measurement (MLM)

Measurement for horizontal distance (dHD), slope distance (dSD), elevation (dVD) and horizontal bearing (HR) between two target prisms.
It is possible to enter the coordinate value directly or calculate from coordinate data file. MLM mode has two modes.

1: MLM-1 (A-B, A-C) :Measurement is A-B, A-C, A-D,.....
2: MLM-2 (A-B, B-C) :Measurement is A-B, B-C, C-D,......

- It is necessary to set the direction angle of the instrument.
[Example] MLM-1 (A-B, A-C)
- Procedure of MLM-2 (A-B, B-C) mode is completely same as MLM-1 mode

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(P \downarrow)$ key to get the menu on page 2.	\{MENU\} \{F4\}	MENU $2 / 4$ F1: MEMORY MGR. F2: PROGRAMS F3: GRID FACTOR P \downarrow
2 Press the \{F2\} key.	\{F2\}	PROGRAMS $1 / 2$ F1: REM F2: MLM F3: Z COORD. P \downarrow
3 Press the \{F2\} (MLM) key.	\{F2\}	$\begin{aligned} & \text { MLM } \\ & \text { F1:USE FILE } \\ & \text { F2:DON'T USE } \end{aligned}$
4 Press the $\{F \mathbf{1}\}$ or $\{\mathbf{F} \mathbf{2}\}$ key to select using coordinate file. [Example:F2 : DON'T USE]	\{F2\}	GRID FACTOR F1: USE G.F. F2:DON'T USE

5 Press the \{F1\} or \{F2\} key to select using GRID FACTOR.
[Example:F2: DON'T USE]

6 Press the $\{\mathrm{F} 1\}$ key.

7 Collimate prism A, and press the \{F1\} (MEAS) key. Horizontal distance (HD) between the instrument and prism A will be shown.

The prism position will be decided.

8 Collimate prism B and press the \{F1\} (MEAS) key. Horizontal distance (HD) between the instrument and prism B will be shown.

The horizontal distance (dHD) and relative elevation (dVD) between prism A and B.

9 To show slope distance (dSD), press $\{\leq \mid\}$ key.

10 To measure the distance between points A and C, press the \{F3\} (HD). *1)

11 Collimate point C (Prism C) and press the \{F1\} (MEAS) key. Horizontal distance (HD) between the instrument and prism C will be shown.

The horizontal distance (dHD) and relative
MLM-1 (A-B, A-C) dHD : 234.567 m dVD : 23.456 m

12 To measure the distance between points A and D, repeat procedure 12 to14. *1)
*1) To return to previous mode, press the \{ESC\} key.

- How to use coordinate data

It is possible to input coordinate value directly or calculate from coordinate data file

Operating procedure	Operation	Display
To use coordinate data file, select "USE FILE" in step 4. After procedure 6.		
1 Press the \{F3\} (NEZ) key. Direct key input display will be shown.	\{F3\}	$\mathrm{N}>$ 0.000 m $\mathrm{E}:$ 0.000 m $\mathrm{Z}:$ 0.000 m INPUT _-- PT\# ENTER
2 Press the \{F3\} (PT\#) key to use coordinate data file. Point number input display will be shown. Pressing the $\{F 3\}(H D)$ key, the display will return to procedure 6.	\{F3\}	MLM-1 (A-B, A-C) PT\# : \qquad INPUT LIST HD ENTER
After selecting coordinate input mode by pressing the \{F3\} (NEZ or PT\# or HD) key, press the \{F1\} (INPUT) key and enter the data.		

6.1.3 Setting Z Coordinate of Occupied Point

Occupied point coordinate data and known point actual measuring data are utilized, z coordinate of occupied point is calculated and reset again.
Known point data and coordinate data can use the coordinate data file.

1) Setting occupied coordinate
[Example setting] Using coordinate data file.

Operating procedure	Operation	Display
1 After pressing \{MENU\} key, press \{F4\}(P \downarrow) key to get the menu on page 2.	\{MENU\} $\{F 4\}$	MENU $2 / 4$ F1: MEMORY MGR. F2: PROGRAMS F3: GRID FACTOR P \downarrow
2 Press the \{F2\} key.	\{F2\}	PROGRAMS $1 / 2$ F1: REM F2: MLM F3:Z COORD. P \downarrow
3 Press the \{F3\} (Z COORD.) key.	\{F3\}	Z COORD.SETTING F1:USE FILE F2:DON'T USE
4 Press the $\{\mathrm{F} 1\}$ (USE FILE) key.	\{F1\}	```SELECT A FILE ```
5 Press the $\{F 1\}$ (INPUT) key and enter the File Name.	$\begin{gathered} \{\mathrm{F} 1\} \\ \text { Enter FN } \\ \{\mathrm{F} 4\} \end{gathered}$	$\begin{aligned} & \text { Z COORD.SETTING } \\ & \text { F1:OCC.PT INPUT } \\ & \text { F2:REF.MEAS } \end{aligned}$
6 Press the $\{\mathrm{F} 1\}$ key.	\{F1\}	```OCC.PT PT# :``` \qquad ```INPUT LIST NEZ ENTER```
7 Press the \{F1\} (INPUT) key and enter the Point number. Instrument height setting display will be shown.	$\begin{gathered} \{\mathrm{F} 1\} \\ \text { Enter PT\# } \\ \{\mathrm{F} 4\} \end{gathered}$	INSTRUMENT HEIGHT INPUT INS. HT $=0.000 \mathrm{~m}$ $-----\quad[C L R] \quad$ [ENT]
8 Enter the height. The display returns to Z coordinate menu.	$\begin{aligned} & \text { Enter HT } \\ & \{\text { F4\} } \end{aligned}$	```Z COORD.SETTING F2:REF.MEAS```
\mathbb{T} 产 For more information about data file, see Chapter 9 "MEMORY MANAGER MODE"		

2) \mathbf{Z} Coordinate Calculation from Known Point Measuring Data
[Example setting] Using coordinate data file

Operating procedure	Operation	Display
1 After pressing $\{$ MENU $\}$ key, press $\{F 4\}(P \downarrow)$ key to get the menu on page 2.	$\underset{\{F 4\}}{\{M E N U\}}$	MENU $2 / 4$ F1:MEMORY MGR. F2: PROGRAMS F3: GRID FACTOR P \downarrow
2 Press the $\{\mathbf{F} \mathbf{2}$ \} key.	\{F2\}	PROGRAMS $1 / 2$ F1:REM F2:MLM F3:Z COORD. P \downarrow
3 Press the \{F3\} (Z COORD.) key.	\{F3\}	$\begin{gathered} \hline \text { Z COORD.SETTING } \\ \text { F1:USE FILE } \\ \text { F2:DON'T USE } \end{gathered}$
4 Press the $\{$ F1\} (USE FILE) key.	\{F1\}	SELECT A FILE FN: INPUT LIST --- ENTER
5 Press the \{F1\} (INPUT) key and enter the File Name.	\{F1\} Enter FN \{F4\}	$\begin{aligned} & \text { Z COORD.SETTING } \\ & \text { F1:OCC.PT INPUT } \\ & \text { F2:REF.MEAS } \end{aligned}$
6 Press the $\{\mathbf{F} \mathbf{2}\}$ key.	\{F2\}	N001\# PT\# : \qquad INPUT LIST NEZ ENTER
7 Press the $\{$ F1\} (INPUT) key and enter the Point Number in coordinate data file.	\{F1\} Enter PT\# \{F4\}	$\mathrm{N}:$ 4.356 m $\mathrm{E}:$ 16.283 m $\mathrm{Z}:$ 1.553 m >OK ? [YES] [NO]
8 Press the $\{F 3\}$ (YES) key and enter the Point Number in coordinate data file.	\{F3\}	REFLECTOR HEIGHT INPUT $\begin{aligned} & \mathrm{R} \cdot \mathrm{HT}=0.000 \mathrm{~m} \\ & -----\quad \text { [CLR] [ENT] } \end{aligned}$
9 Enter the height.	Enter R. HT \{F4\}	REFLECTOR HEIGHT INPUT R. HT : 0.000 MEAS --- NP/P
10 Collimate a prism on the point and press the $\{F 1\}$ (MEAS) key. Measuring starts. *1)	Collimate P \{F1\}	

11 Press the \{F4\} (CALC) key.*2)
HR: $120^{\circ} 30^{\prime \prime} 40^{\prime \prime}$
HD: $\quad 12.345 \mathrm{~m}$
VD: $\quad 23.456 \mathrm{~m}$
NEXT --- --- CALC

Z: Z coordinate
dZ: Standard deviation
\{F4\}
$\begin{aligned} & \mathrm{Z} \text { COORD. SETTING } \\ & \mathrm{Z}: 1.234 \mathrm{~m} \\ & \mathrm{dZ}: \\ &--- 0.002 \mathrm{~m} \\ & \text { _-- } \text { BS }\end{aligned}$
12 Press the \{F4\} (SET) key. *3)
Z coordinate of the occupied point will be set.
Bascksight point measuring screen will be shown.
13 Press the \{F3\} (YES) key.
\{F3\}
BACKSIGHT
HR: $23^{\circ} 20^{\prime \prime} 40^{\prime \prime}$
>OK?
[YES] [NO]

Horizontal angle will be set.
The display returns to Programs $1 / 2$ menu.

PROGRAMS	$1 / 2$
F1: REM	
F2: MLM	
F3: Z COORD.	P \downarrow

*1) Measurement is Fine N -times measurement mode.
*2) To measure other points, press the \{F1\} (NEXT) key.
*3) Pressing the $\{F 3\}$ key, the display will be changed alternately.

6.1.4 Area Calculation

This mode calculate the area of a closed figure.
There are two area calculation methods as follows.

1) Area Calculation from Coordinate data file
2) Area Calculation from Measured data

- Area is not calculated correctly if enclosed lines cross each other.
- It is impossible to calculate what a mix of coordinate file data and measured data.
- If the coordinate data file does not exist, the area calculation from measured data is done automatically.
- The numbers of points used to calculate are not limited.

1) Area Calculation from Coordinate Data File

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(P \downarrow)$ key to get the menu on page $2 / 4$.	\{MENU\} \{F4\}	MENU $2 / 4$ F1: MEMORY MGR. F2: PROGRAMS F3: GRID FACTOR P \downarrow
2 Press the \{F2\} key.	\{F2\}	PROGRAMS $1 / 2$ F1: REM F2: MLM F3: Z COORD. P \downarrow
3 Press the $\{F 4\}(P \downarrow)$ key to get the PROGRAMS menu on page $2 / 2$.	\{F4\}	PROGRAMS $2 / 2$ F1:AREA F2: POINT TO LINE F3: ROAD
4 Press the \{F1\} (AREA) key.	\{F1\}	AREA F1: FILE DATA F2: MEASUREMENT
5 Press the \{F1\} (FILE DATA) key.	\{F1\}	```SELECT A FILE ```
6 Press the \{F1\} (INPUT) key and enter the File Name. Initial display will be shown.	$\begin{gathered} \{\mathrm{F} 1\} \\ \text { Enter FN } \\ \{\mathrm{F} 4\} \end{gathered}$	AREA 0000 m.sq NEXT\# :DATA-01 PT\# LIST UNIT
7 Press the \{F4\} (NEXT) key. *1),2) The top of the file data (DATA-01) will be set and the second point number will be shown.	\{F4\}	AREA 0001 m.sq NEXT\# :DATA-02 PT\# LIST UNIT NEXT
8 Repeat pressing the \{F4\} (NEXT) key to set required number of points.	\{F4\}	

When 3 or more points are set, the area surrounded by the points is calculated and the AREA 0021
$123.456 \mathrm{~m} . \mathrm{sq}$
NEXT\# : DATA-22
PT\# LIST UNIT NEXT
*1) To set specify point, press the \{F1\} (PT\#) key.
$\left.{ }^{*} 2\right)$ To show the list of the coordinate data in the file, press the \{F2\} (LIST) key.
2) Area Calculation from Measured Data

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(P \downarrow)$ key to get the menu on page $2 / 4$.	\{MENU\} \{F4\}	MENU $2 / 4$ F1: MEMORY MGR. F2: PROGRAMS F3: GRID FACTOR P \downarrow
2 Press the \{F2\} key.	\{F2\}	PROGRAMS $1 / 2$ F1: REM F2:MLM F3: Z COORD. P \downarrow
3 Press the $\{\mathrm{F} 4\}(\mathrm{P} \downarrow)$ key to get the PROGRAMS menu on page $2 / 2$.	\{F4\}	PROGRAMS $2 / 2$ F1:AREA F2: POINT TO FINE F3: ROAD
4 Press the \{F1\} (AREA) key.	\{F1\}	AREA F1:FILE DATA F2: MEASUREMENT
5 Press the \{F2\} (MEASUREMENT) key.	\{F2\}	```AREA F1:USE G.F. F2:DON'T USE```
6 Press the \{F1\} or \{F2\} key to select using GRID FACTOR. [Example:F2 : DON'T USE]	\{F2\}	AREA 0000 MEAS m.sq
7 Collimate a prism and press the \{F1\} (MEAS) key. Measuring starts. *1)	$\begin{aligned} & \text { Collimate } P \\ & \{F 1\} \end{aligned}$	
		AREA \downarrow MEAS m.sq --- UNIT NP/P
8 Collimate next point and press the $\{F 1\}$ (MEAS) key.	Collimate \{F1\}	

When 3 or more points are measured, the area surrounded by the points is calculated and the result will be shown.

```
|AREA 
```

*1) Measurement is Fine N-times measurement mode.

- To change the display unit

It is possible to change the displayed area unit.

Operating procedure	Operation	Display
		AREA 0003 100.000 m.sq MEAS --- UNIT
1 Press the \{F3\} (UNIT) key.	\{F3\}	AREA 0003 $100.000 \mathrm{m.sq}$ m.sq ha ft.sq acre
2 Select a unit by pressing the $\{F 1\}$ to $\{F 4\}$ key. Example: \{F2\} (ha) key.	\{F2\}	AREA 0003 0.010 ha MEAS --- UNIT NP/P
- m.sq: square meter ha: hectare ft.sq: squer	et acre: acre.	

6.1.5 Point to Line Measurement

This mode is used to obtain the coordinate data with the origin point $A(0,0,0)$ and the line $A B$ as N axis. Place the 2 prisms at the points A and B on the line, and place the instrument at unknown point C. After measuring the 2 prisms, the coordinate data and the direction angle of the instrument will be calculated and restored.

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(P \downarrow)$ key to get the menu on page $2 / 4$.	\{MENU\} \{F4\}	MENU $2 / 4$ F1: MEMORY MGR. F2: PROGRAMS F3: GRID FACTOR P \downarrow
2 Press the \{F2\} key.	\{F2\}	PROGRAMS $1 / 2$ F1: REM F2:MLM F3: Z COORD. P \downarrow
3 Press the $\{F 4\}(P \downarrow)$ key to get the PROGRAMS menu on page $2 / 2$.	\{F4\}	PROGRAMS $2 / 2$ F1:AREA F2: POINT TO FINE F3: ROAD
4 Press the $\{\mathrm{F} 2\}$ key.	\{F2\}	
5 Enter instrument height.	Enter INS.HT \{F4\}	REFLECTOR HEIGHT INPUT R.HT $=0.000$ m --- --- $[C L R]$ [ENT]
6 Enter reflector $\mathrm{A}(\mathrm{P} 1)$ height.	Enter R.HT \{F4\}	POINT TO LINE MEAS.P1 HD: MEAS ---

7 Collimate prism P1 (Origin) and press \{F1\}
(MEAS) key.
Measuring starts. *1)

Input display of reflector B (P2) height will be shown.

8 Enter reflector B (P2) height.

9 Collimate prism B(P2) (Origin) and press the $\{\mathrm{F} 1\}$ (MEAS) key. Measuring starts. *1)

The coordinate data and the direction angle of the instrument are calculated and restored.
The result (The distance between A and B) will be displayed.
dHD: Horizontal distance
dVD:Vertical distance dSD:Slope distance *2),3)

10 Press \{F1\} (NEZ) key to measure other points.

11 Collimate a prism and press \{F1\} (MEAS) key.
Coordinate measurement starts. *4)
The result will be shown. *5)

Collimate
P1
\{F1\}
POINT TO LINE
MEAS . P1
HD*[n] $\ll m$
$>$ Measuring...

| \downarrow | |
| :--- | :--- | :--- |
| $\left.\begin{array}{llll}\text { REFLECTOR } & \text { HEIGHT } \\ \text { INPUT } & & \\ \text { R.HT= } & 0.000 \mathrm{~m} \\ --- & --- & \text { [CLR] } & \text { [ENT] }\end{array}\right]$ | |

Enter R. HT \{F4\}

Collimate
P2
\{F1\}

\{F1\}

*1) Measurement is Fine N-times measurement mode.
*2) To show dSD, press \{F4\} (P \downarrow) key.
*3) To show the new occupied data, press \{F2\} (S.CO) key.
*4) Measurement is Fine N -times measurement mode.
*5) To return to previous mode, press the \{ESC\} key.

6.2 Setting the GRID FACTOR

GRID FACTOR can reset in this menu mode.
啰 For more information, refer to Section 8.1.1 "Setting the GRID FACTOR".
Grid Factor can be applied to the following application programs.
It is also possible to cancel the Grid factor function by selecting "DON'T USE" in "SELECTING MODE". At this time the setting and selecting screens for Grid Factor will be omitted.

- Data collection mode

When the NEZ automatic calculation (NEZ AUTO. CALC) is ON, Grid factor will be applied to the coordinate data (Including PTL data) recorded into a coordinate data file when the RAW data is measured and recorded. (In this case, Grid Factor is not applied to the RAW data recorded into the measured data file.)

PTL (Point To Line measurement)
When executing PTL measurement mode, the NEZ Auto Calculation will be turned on compulsorily and Grid factor will be applied to the coordinate data.

- Layout / ROAD

Execution Layout (Including PTL measurement mode) / ROAD

1. When displaying the difference (dHD) between grid horizontal distance to a layout point (HDg) on the projection plane and measured ground horizontal distance to a prism point (HD), Grid factor will be applied to grid distance (HDg) in order to reverse-convert grid distance to ground distance.
2. After completion of a layout point, the displayed coordinate data will be applied to grid factor in order to compare with surveying data and calculated data on the projection plane.
(NEW POINT-Side Shot)
In the side shot method, the coordinate of a new point will be applied to grid factor and it will be recorded into a coordinate data file.
(NEW POINT - Resection)
In the resection method, when the calculated coordinate of a new point is displayed or recorded, it will be applied to grid factor and be recorded into a coordinate data file.

- MLM (Missing Line Measurement)

When selecting grid factor "USE G.F.", measured data will be applied to grid factor. At this time, horizontal distance (dHD) and slope distance (dSD) will be on the projection plane.

- AREA (Area calculation / Measured method)

When selecting grid factor "USE G.F.", measured data will be applied to grid factor. At this time, the calculated area will be on the projection plane.

- Calculation of Z coordinate is not influenced even if it is applied to grid factor.

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the $\{F 4\}$ $(\mathrm{P} \downarrow)$ key to get the menu on page 2.	\{MENU\} \{F4\}	
2 Press the \{F3\} (GRID FACTOR) key.	\{F3\}	$\begin{aligned} & \text { GRID FACTOR } \\ & \quad=0.998843 \\ & >M O D I F Y ? \quad[Y E S] \text { [NO] } \end{aligned}$

	Press the $\{\mathrm{F} 3\}$ (YE	key.	\{F3\}	
	Enter Elevation. *1	Press the $\{F 4\}$ (ENT) key.	Enter ELEV. \{F4\}	
5	Enter Scale Factor	he same way.	Enter Scale \{F4\}	$\begin{array}{\|l} \hline \text { GRID FACTOR } \\ \text { ELEV.: } 2000 \mathrm{~m} \\ \text { SCALE=1.001000 } \\ -----\quad \text { [CLR] [ENT] } \end{array}$
	Grid Factor is displ display returns to m	ed for 1 to 2 second and nu.		$\begin{aligned} & \text { GRID FACTOR } \\ & =1.000686 \end{aligned}$
*1) $\mathbb{C} 3$ Refer to Section 2.4 "How to Enter Alphanumeric Characters". Input Range:Elevation : -9,999 to 9,999 meter ($-32,805$ to $3,2805 \mathrm{ft}, \mathrm{ft}+\mathrm{in}$) Scale Factor: 0.990000 to 1.010000				

6.3 Setting Illumination of Display and Cross Hairs

Setting ON/OFF/LEVEL (1 to 5) for illumination of display (LCD) and reticle.
Setting LEVEL (1 to 5) is only for reticle.
[Example setting] LEVEL:2 and turn on the illumination.

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(\mathrm{P} \downarrow)$ key twice to get the menu on page 3.	$\begin{gathered} \{\text { MENU }\} \\ \{F 4\} \\ \{F 4\} \end{gathered}$	MENU $3 / 4$ F1:ILLUMINATION F2: PARAMETERS F3: PARAMETERS 2
2 Press the $\{F 1\}$ key. The data previously set is shown.	\{F1\}	ILLUMINATION [OFF:1] F1:ON F2:OFF F3:LEVEL
3 Press the \{F3\} (LEVEL) key.	\{F3\}	
4 Press the $\{\mathrm{F} 2\}(\uparrow)$ key, and then press the $\{\mathrm{F} 4\}$ (ENTER) key.	$\begin{aligned} & \{F 2\} \\ & \{F 4\} \end{aligned}$	ILLUMINATION [OFF:2] F1:ON F2:OFF F3:LEVEL
5 Press the \{F1\} (ON) key.	\{F1\}	ILLUMINATION [ON:2] F1:ON F2:OFF F3: LEVEL

6.4 Setting Mode 1

In this mode, the following settings are possible.

1. Setting minimum reading
2. Auto power off
3. Vertical and horizontal angle tilt correction (Tilt ON/OFF)
4. Systematic error of instrument correction
5. Setting for RS-232C communication
6. Selecting communication port (only for Bluetooth function built-in model)
7. Confirming the Bluetooth device address (only for Bluetooth function built-in model)
8. Setting humidity input
9. Setting NP-TRK mode
10. Setting EDM eco. mode
11. Setting volume

Note

- This setting is memorized after power off.

6.4.1 Setting Minimum Reading

Select minimum display unit for angle measurement, coarse distance measurement mode.
挐 To select minimum display for fine measurement mode, see Chapter 17 "SELECTING MODE" .

Models	Angle Unit			Coarse mode Distance unit
	Degree	GON	MIL	
GM-52/55	1" / 5"	0.0002 gon / 0.0010 gon	0.005 mil / 0.02 mil	Prism mode, Non-Prism mode $10 \mathrm{~mm}(0.02 \mathrm{ft}) / 1 \mathrm{~mm}(0.005 \mathrm{ft})$

[Example] Minimum angle: 5", Coarse: 1 mm

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(\mathrm{P} \downarrow)$ key twice to get the menu on page 3.	\{MENU\} \{F4\} \{F4\}	MENU $3 / 4$ F1: ILLUMINATION F2: PARAMETERS 1 F3: PARAMETERS 2 P \downarrow
2 Press the \{F2\} key.	\{F2\}	PARAMETERS 1 $1 / 4$ F1: MINIMUM READING F2: AUTO POWER OFF F3:TILT P \downarrow
3 Press the \{F1\} key.	\{F1\}	MINIMUM READING F1: ANGLE F2: COARSE
4 Press the $\{\mathrm{F} 1\}$ key.	\{F1\}	MINIMUM ANGLE [F1: 1" F2: 5" ENTER
5 Press the $\{\mathbf{F} \mathbf{2}\}\left(5^{\prime \prime}\right)$ key and press the $\{\mathbf{F} 4\}$ (ENTER) key.	$\begin{aligned} & \{F 2\} \\ & \{F 4\} \end{aligned}$	MINIMUM READING F1: ANGLE F2: COARSE

6 Press the \{F2\} key.	\{F2\}	COARSE READING F1: 1 mm [F2:10 mm] ENTER
7 Press the $\{\mathrm{F} 1\}$ key and press the $\{\mathrm{F} 4\}$ (ENTER) key.	$\begin{aligned} & \{F 1\} \\ & \{F 4\} \end{aligned}$	MINIMUM READING F1: ANGLE F2: COARSE
- To return to previous mode, press the \{ESC\} key.		

6.4.2 Auto Power Off

If no key operation is given or no process of measurement is performed for more than 30 minutes (No change exceeding 30 " has occurred during horizontal angle or vertical angle measurement.), the power turns off automatically.

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(\mathrm{P} \downarrow)$ key twice to get the menu on page 3.	$\begin{gathered} \{M E N U\} \\ \{F 4\} \\ \{F 4\} \end{gathered}$	MENU $3 / 4$ F1: ILLUMINATION F2: PARAMETERS 1 F3: PARAMETERS 2 P \downarrow
2 Press the \{F2\} key.	\{F2\}	PARAMETERS 1 $1 / 4$ F1: MINIMUM READING F2:AUTO POWER OFF F3:TILT P \downarrow
3 Press the \{F2\} key. The data previously set is shown.	\{F2\}	AUTO POWER OFF [OFF] F1: ON F2: OFF ENTER
4 Press the \{F1\} (ON) key or \{F2\} (OFF) key, and press the \{F4\} (ENTER) key.	$\begin{gathered} \{F 1\} \\ \text { or } \\ \{F 2\} \\ \{F 4\} \end{gathered}$	

6.4.3 Vertical and Horizontal Angle Tilt correction (Tilt ON/OFF)

In case the instrument is used in an unstable situation, constant indexing of vertical and horizontal angle may be impossible. In this case, the function of tilt correction can be stopped by selecting TILT OFF. It has been set to $X, Y(V / H)$ TILT ON at the factory.

Note

- This setting is memorized after power off.

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(\mathrm{P} \downarrow)$ key twice to get the menu on page 3.	$\begin{gathered} \{\text { MENU }\} \\ \{F 4\} \\ \{F 4\} \end{gathered}$	MENU $3 / 4$ F1: ILLUMINATION F2:PARAMETERS F3: PARAMETERS 2 P \downarrow
2 Press the \{F2\} key.	\{F2\}	PARAMETERS 1 $1 / 4$ F1:MINIMUM READING F2: AUTO POWER OFF F3:TILT P \downarrow
3 Press the $\{\mathrm{F} 3\}$ key. The data previously set is shown. If already ON , the display shows tilt correction value.	\{F3\}	TILT SENSOR: [XY-ON] X: $0^{\circ} 02^{\prime} 10 "$ Y: $0^{\circ} 03^{\prime} 00 "$ X-ON XY-ON OFF ENTER
4 Press the $\{\mathrm{F} 1\}(\mathrm{X}-\mathrm{ON})$ key or $\{\mathrm{F} 2\}$ (XY-ON) or \{F3\} (OFF) key, and press the \{F4\} (ENTER) key.	$\begin{gathered} \{\mathrm{F} 1\} \sim\{\mathrm{F} 3\} \\ \{\mathrm{F} 4\} \end{gathered}$	

6.4.4 Systematic Error of Instrument Correction

Setting ON/OFF for error correction of collimation and horizontal axis for angle measurement.

- Perform this item after complete Section 18.3 "Adjustment of Compensation Systematic Error of Instrument".

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(\mathrm{P} \downarrow)$ key twice to get the menu on page 2.	$\begin{gathered} \{\text { MENU }\} \\ \{F 4\} \\ \{F 4\} \end{gathered}$	MENU $3 / 4$ F1:ILLUMINATION F2: PARAMETERS 1 F3: PARAMETERS 2
2 Press the $\{\mathbf{F} \mathbf{2}\}$ key.	\{F2\}	PARAMETERS 1 $1 / 4$ F1:MINIMUM READING F2:AUTO POWER OFF F3:TILT P \downarrow
3 Press the \{F4\} key.	\{F4\}	PARAMETERS 1 $2 / 4$ F1: ERROR CORRECTION F2:RS-232C F3:SELECT COM P \downarrow

4 Press the $\{\mathrm{F} 1\}$ key. The data previously set is shown.	$\{\mathrm{F} 1\}$	ERROR CORR. [OFF] F1:ON F2:OFF ENTER
5 Press the \{F1\} (ON) key or \{F2\} (OFF) key, and press the $\{F 4\}$ (ENTER) key.	$\begin{gathered} \{F 1\} \\ \text { or } \\ \{F 2\} \\ \{F 4\} \end{gathered}$	

6.4.5 Setting RS-232C communication with external device

you can set the parameters for RS-232C communication with external device from parameters setting menu.
The following parameters can be set.

Item	Selecting items
Baud rate	1200, 2400, 4800, 9600, 19200, 38400
Character bit (bit length)/Parity	7/Even, 7/Odd, 8/None
Stop bit	1,2
ACK mode	Standard, Omitted
CR,LF	ON, OFF
REC type	REC-A, REC-B
Factory setting	Baud rate: 1200 baud rate, Character bit/Parity:7/Even, CRLF:OFF, REC type: REC-A, ACK:Standard

ACK mode, CRLF and REC type are interlocked with the same items in the selecting mode.
挦 Refer to 17 "SELECTING MODE"

Sample setting

STOP BITS: 2

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(\mathrm{P} \downarrow)$ key twice to get the menu on page 2.	$\begin{gathered} \{\text { MENU }\} \\ \{F 4\} \\ \{F 4\} \end{gathered}$	$\begin{array}{lll}\text { MENU } & 3 / 4 \\ \text { F1: ILLUMINATION } \\ \text { F2: PARAMETERS } & 1 & \\ \text { F3:PARAMETERS } & 2 & P \downarrow\end{array}$
2 Press the \{F2\} key.	\{F2\}	PARAMETERS 1 $1 / 4$ F1:MINIMUM READING F2: AUTO POWER OFF F3:TILT P \downarrow
3 Press the \{F4\} key.	\{F4\}	PARAMETERS 1 $2 / 4$ F1:ERROR CORRECTION F2:RS-232C F3:SELECT COM
4 Press the \{F2\} key. The data previously set is shown.	\{F2\}	RS-232C $1 / 3$ F1: BAUD RATE F2:CHAR./PARITY F3:STOP BITS P \downarrow
5 Press the $\{F 3\}$ key to select STOP BITS. The data previously set is marked.	\{F3\}	STOP BITS [F1:1 F2:2 ENTER
6 Press the \{F2\} (2) key to select stop bit 2, and press the \{F4\} (ENTER) key.	$\begin{aligned} & \{F 2\} \\ & \{F 4\} \end{aligned}$	

6.4.6 Selecting Communication Port

You can change the communication port to Bluetooth port (Bluetooth function is an optional function).

Sample setting

Bluetooth

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(\mathrm{P} \downarrow)$ key twice to get the menu on page 3 .	$\begin{gathered} \{\text { MENU }\} \\ \{F 4\} \\ \{F 4\} \end{gathered}$	$\left.\begin{array}{\|lr\|}\hline \text { MENU } & 3 / 4 \\ \text { F1: ILLUMINATION } & \\ \text { F2:PARAMETERS } & 1 \\ \text { F3: PARAMETERS } & 2\end{array}\right)$ P \downarrow.
2 Press the \{F2\} key.	\{F2\}	PARAMETERS 1 $1 / 4$ F1:MINIMUM READING F2:AUTO POWER OFF F3:TILT P \downarrow
3 Press the \{F4\} key.	\{F4\}	PARAMETERS 1 $2 / 4$ F1: ERROR CORRECTION F2: RS-232C F3: SELECT COM
4 Press the $\{\mathrm{F} 3\}$ key.	\{F3\}	```SELECT COM F1:BLUETOOTH [F2:RS-232C] ENTER```
5 Press the $\{\mathrm{F} 1\}$ (BLUETOOTH) key to select the communication port and press the \{F4\} (ENTER) key. The display will return to the previous menu.	$\begin{aligned} & \{F 1\} \\ & \{F 4\} \end{aligned}$	```SELECT COM [F1:BLUETOOTH] F2:RS-232C```

[^0]
6.4.7 Confirming the Bluetooth Device Address

 (Only for Bluetooth function built-in model)You can confirm the Bluetooth address

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(P \downarrow)$ key twice to get the menu on page 3 .	$\begin{gathered} \{M E N U\} \\ \{F 4\} \\ \{F 4\} \end{gathered}$	MENU $3 / 4$ F1:ILLUMINATION F2: PARAMETERS F3: PARAMETERS 2 P \downarrow
2 Press the \{F2\} key.	\{F2\}	PARAMETERS 1 $1 / 4$ F1:MINIMUM READING F2: AUTO POWER OFF F3:TILT P \downarrow
3 Press the \{F4\} key.	\{F4\}	PARAMETERS 1 $2 / 4$ F1: ERROR CORRECTION F2: RS-232C F3:SELECT COM P \downarrow
4 Press the \{F4\} key.	\{F4\}	PARAMETERS 1 $3 / 4$ F1: BLUETOOTH F2: HUMID. INPUT F3: NP-TRK. MODE P \downarrow
5 Press the $\{\mathrm{F} 1\}$ key. Register the Bluetooth address (ADDR.) displayed here in the paired device set as "Master".	\{F1\}	BLUETOOTH ADDR. : 0000E14F49B4 ENTER
6 Press the \{F4\} (ENTER) key.	\{F4\}	

- Bluetooth device address

This is a number unique to one particular Bluetooth device used to identify devices during communication. This number consists of 12 characters (numbers 0 to 9 and letters from A to F). Some devices may be referred to by their Bluetooth device address.

6.4.8 Humidity Input ON/OFF Setting

Factory setting for humidity input is "OFF". In this case, atmospheric correction factor is calculated assuming humidity is 50%. By setting humidity input to "ON", an arbitrary value can be input for humidity.
\mathbb{C}

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(\mathrm{P} \downarrow)$ key twice to get the menu on page 3 .	$\begin{gathered} \{M E N U\} \\ \{F 4\} \\ \{F 4\} \end{gathered}$	MENU $3 / 4$ F1: ILLUMINATION F2: PARAMETERS 1 F3: PARAMETERS 2 P \downarrow
2 Press the \{F2\} key.	\{F2\}	PARAMETERS 1 $1 / 4$ F1:MINIMUM READING F2: AUTO POWER OFF F3:TILT P \downarrow
3 Press the \{F4\} key.	\{F4\}	PARAMETERS 1 $2 / 4$ F1:ERROR CORRECTION F2:RS-232C F3:SELECT COM P \downarrow
4 Press the \{F4\} key.	\{F4\}	PARAMETERS 1 $3 / 4$ F1: BLUETOOTH F2: HUMID. INPUT F3:NP-TRK. MODE P \downarrow
5 Press the \{F2\} key. Current setting is displayed.	\{F2\}	HUMID.INPUT [ON] F1:ON F2:OFF ENTER
6 Press the \{F1\} (ON) key or \{F2\} (OFF) key, and press the \{F4\} (ENTER) key.	$\begin{gathered} \{F 1\} \\ \text { or } \\ \{F 2\} \\ \{F 4\} \end{gathered}$	

6.4.9 NP-TRK MODE Setting

Set the distance mode here for performing tracking measurement, setting "Non-prism" as target type.
"ROAD" is the dedicated measuring mode to sight road surface etc. obliquely to obtain rough measurement values. Normally use "STANDARD".

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(\mathrm{P} \downarrow)$ key twice to get the menu on page 3.	$\begin{gathered} \{\text { MENU }\} \\ \{F 4\} \\ \{F 4\} \end{gathered}$	MENU F1: ILLUMINATION F2: PARAMETERS 1 F3: PARAMETERS 2 P \downarrow
2 Press the \{F2\} key.	\{F2\}	PARAMETERS 1 $1 / 4$ F1:MINIMUM READING F2:AUTO POWER OFF F3: TILT P \downarrow
3 Press the \{F4\} key.	\{F4\}	PARAMETERS 1 $2 / 4$ F1:ERROR CORRECTION F2: RS-232C F3:SELECT COM \quad P \downarrow
4 Press the $\{\mathrm{F} 4\}$ key.	\{F4\}	PARAMETERS 1 $3 / 4$ F1: BLUETOOTH F2: HUMID. INPUT F3:NP-TRK. MODE P \downarrow
5 Press the $\{\mathrm{F} 3\}$ key. Current setting is displayed.	\{F3\}	NP-TRK.MODE [F1: STANDARD] F2: ROAD ENTER
6 Press the \{F1\} (Standard) key or \{F2\} (Road) key, and press the $\{F 4\}$ (ENTER) key.	$\begin{gathered} \{F 1\} \\ \text { or } \\ \{F 2\} \\ \{F 4\} \end{gathered}$	

Note

- The circled icon is displayed when "ROAD" being set in "NP-TRK.MODE" and performing NP-TRK measurement.

6.4.10EDM ECO. MODE Setting

Working duration will be longer by controlling and saving power to the EDM device.

- Time required to start distance measurement will be longer than usual when "EDM ECO. MODE" is set to "ON".

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(\mathrm{P} \downarrow)$ key twice to get the menu on page 3 .	$\begin{gathered} \{\text { MENU }\} \\ \{F 4\} \\ \{F 4\} \end{gathered}$	MENU $3 / 4$ F1: ILLUMINATION F2: PARAMETERS F3: PARAMETERS 2 P \downarrow
2 Press the \{F2\} key.	\{F2\}	PARAMETERS 1 $1 / 4$ F1:MINIMUM READING F2:AUTO POWER OFF F3:TILT P \downarrow
3 Press the \{F4\} key.	\{F4\}	PARAMETERS 1 $2 / 4$ F1:ERROR CORRECTION F2: RS-232C F3:SELECT COM
4 Press the \{F4\} key.	\{F4\}	PARAMETERS 1 $3 / 4$ F1: BLUETOOTH F2: HUMID. INPUT F3: NP-TRK. MODE P \downarrow
5 Press the \{F4\} key.	\{F4\}	PARAMETERS 1 $4 / 4$ F2: EDM ECO. MODE F3: VOLUME
6 Press the $\{\mathrm{F} 1\}$ key. Current setting is displayed.	\{F1\}	EDM ECO.MODE [F1:ON $]$ F2:OFF ENTER
7 Press the \{F1\} (ON) key or \{F2\} (OFF) key, and press the \{F4\} (ENTER) key.	$\begin{gathered} \{F 1\} \\ \text { or } \\ \{F 2\} \\ \{F 4\} \end{gathered}$	

6.4.11 Volume Setting

Set beep volume.
Volume (0 to 5,0 : beep is OFF) can also be set.

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the $\{F 4\}$ $(\mathrm{P} \downarrow)$ key three times to get the menu on page 4.	\{MENU\} \{F4\} \{F4\} \{F4\}	PARAMETERS 1 $4 / 4$ F2:EDM ECO.MODE F3:VOLUME P \downarrow
2 Press the $\{\mathbf{F} \mathbf{2}\}$ key. The data previously set is shown.	\{F2\}	VOLUME LEVEL $:$ 0 \downarrow \uparrow --- ENTER
3 Press the $\{\mathrm{F} 1\}(\downarrow)$ key or $\{\mathrm{F} 2\}$ (\uparrow) key, and press the \{F4\} (ENTER) key.	$\underset{\{F 4\}}{\substack{\{F 1\} \\\{F \\ \text { or }\{F 2\}}}$	
- To return to previous mode, press the \{ESC\} key		

6.5 Setting Contrast of Display

Setting level for contrast of display (LCD)

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(P \downarrow)$ key three times to get the menu on page 4.	$\begin{gathered} \{\text { MENU\} } \\ \{F 4\} \\ \{F 4\} \\ \{F 4\} \end{gathered}$	MENU $4 / 4$ F1: ADJUSTMENT MODE F2: CONTRAST ADJ . F3: STATUS SCREEN
2 Press the \{F2\} key.	$\{\mathrm{F} 2\}$	CONTRAST ADJUSTMENT LEVEL: 4 $\downarrow \quad \uparrow \quad$ _-- \quad ENTER
3 Press the $\{\mathrm{F} 1\}(\downarrow)$ key or $\{\mathbf{F} 2\}(\uparrow)$ key, and press the \{F4\} (ENTER) key.	$\begin{gathered} \{\mathrm{F} 1\} \text { or }\{\mathrm{F} 2\} \\ \{\mathrm{F} 4\} \end{gathered}$	

6.6 Displaying Instrument Information

Serial number and software version of your instrument are displayed.

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the \{F4\} $(\mathrm{P} \downarrow)$ key three times to get the menu on page 4.	\{MENU\} \{F4\} \{F4\} \{F4\}	MENU $4 / 4$ F1: ADJUSTMENT MODE F2: CONTRAST ADJ. F3:STATUS SCREEN P \downarrow
2 Press the \{F3\} key.	\{F3\}	$\begin{array}{ll} \text { GM-52 } \\ \text { S/N } & \\ \text { VXI23456 } \\ \text { VER. XXXX_XX } \\ & \text { X.XX_XX } \end{array}$
3 Press the \{F4\} key. Functions on your instrument are displayed.	\{F4\}	```BUILD Internal Pt. :50000 Bluetooth```
4 Press the \{ESC\} key.	\{ESC\}	

6.7 Road

- Road menu operation

6.7.1 Inputting Start Point

To input the start point, carry out the following operating procedure.

	Operating procedure	Operation	Display
	After pressing the \{MENU\} key, press the $\{F 4\}$ ($\mathrm{P} \downarrow$), \{F2\}, $\{\mathrm{F} 4\}$ key to get the programs menu on page $2 / 2$	\{MENU\} \{F4\} \{F2\} \{F4\}	PROGRAMS $2 / 2$ F1:AREA F2: POINT TO F3: ROAD
2	Press the $\{F 3\},\{\mathrm{F} 1\},\{\mathrm{F} 1\}$ key. (\mathbb{C}	$\begin{aligned} & \{F 3\} \\ & \{F 1\} \\ & \{F 1\} \end{aligned}$	$\begin{array}{cccr}\text { START } & \text { POINT } & \\ \mathrm{N}= & 0.000 & \mathrm{~m} \\ \mathrm{E}= & 0.000 & \mathrm{~m} \\ --- & 0.0 & \text { [CLR] } & \text { [ENT] }\end{array}$
3	Input coord N, E. Press the \{ENT\} key.	Input coord \{ENT\}	START POINT CHAIN $=0.000 \quad \mathrm{~m}$ INTERVAL: $100.000 \quad \mathrm{~m}$ $-----\quad$ [CLR] [ENT]
	Input value data CHAIN, INTERVAL. Press the $\{E N T\}$ key.	Input data \{ENT\}	<SET! >
			INPUT DATA F1:START POINT F2:H ALIGNMENT
- For [ROAD], in addition to the "Start Point" and "Road Data" input files, other files necessary for the calculations are created. Consequently, if the free area of the memory reaches 10% or less, a "MEMORY POOR" warning message is displayed. (In this case, the instrument can still be operated.) - CHAIN and INTERVAL input range $\begin{gathered} -50,000 \mathrm{~m} \leq \text { CHAIN } \leq 500,000 \mathrm{~m} \\ 0 \mathrm{~m}<\text { INTERVAL } \leq 5,000 \mathrm{~m} \end{gathered}$			

6.7.2 Inputting Road Data

[ROAD] is made up of four types of components: LINE, CURVE, SPIRAL and POINT.
To input the required components, carry out the following operating procedure.

Operating procedure	Operation	Display
1 After pressing the $\{$ MENU $\}$ key, press the $\{F 4\}$ ($P \downarrow$), $\{F 2\},\{F 4\}$ key to get the programs menu on page 2/ 2.	$\begin{gathered} \{\text { MENU }\} \\ \{F 4\} \\ \{F 2\} \\ \{F 4\} \end{gathered}$	$\begin{array}{llr}\text { PROGRAMS } & & 2 / 2 \\ \text { F1:AREA } & \\ \text { F2: POINT } & \text { TO } & \text { LINE } \\ \text { F3: ROAD } & & \text { P } \downarrow\end{array}$
2 Press the $\{F 3\},\{F 1\},\{F 2\},\{F 1\}$ key. ([\{F3\} \{F1\} \{F2\} \{F1\}	F1: LINE F2: CURVE F3: SPIRAL F4: POINT

- The amount of input data varies depending on the type of data, up to a maximum of 30 . (In the case of POINT input only, the maximum is 9 points including end point.)
- An error may occur when entering a combination of POINT and other components if the amount of data entered exceeds the maximum amount allowed for internal calculations. If this happens, please reduce the amount of input data.
- Input LINE data

Operating procedure	Operation	Display
1 To input LINE data, press the \{F1\} key. *1)	\{F1\}	F1: LINE F2: CURVE F3:SPIRAL F4: POINT
		LINE 01 L $=$ 0.000 m AZ: $0^{\circ} 00^{\prime} 00^{\prime \prime}$ $---]^{\prime}$ [CLR] [ENT]
2 Input LENGTH. 3 Press the $\{E N T\}$ key.	Input LENGTH \{ENT\}	LINE 01 L : 100.000 m AZ= $0^{\circ} 00^{\prime} 00^{\prime \prime}$ $---l^{\prime}$ [CLR] [ENT]
4 Input AZIMUTH. 5 Press the $\{E N T\}$ key.	Input AZIMUTH \{ENT\}	-
		<SET!>

*1) The number at the top right of the screen shows the amount of data currently entered.

- Input CURVE data

Operating procedure	Operation	Display
		$\begin{aligned} & \text { F1: LINE } \\ & \text { F2: CURVE } \\ & \text { F3: SPIRAL } \\ & \text { F4: POINT } \end{aligned}$
1 To input CURVE data, press the \{F2\} key. *1)	\{F2\}	CURVE 02 $R=$ 0.000 m $\mathrm{~L}=$ 0.000 m $---l^{\prime}$ [CLR] [ENT]
2 Input RADIUS. 3 Press the $\{E N T\}$ key.	Input RADIUS \{ENT\}	
4 Input LENGTH. 5 Press the $\{E N T\}$ key.	Input LENGTH \{ENT\}	
6 Select TURN (direction of turn): RIGHT or LEFT. 7 Press the \{ENT\} key.	Select \{F1\} (LEFT) or \{F2\} (RIGHT) \{ENT\}	CURVE TURN $>$ RIGHT LEFT RIGHT $-\ldots$ ENTER
		<SET! >
*1) CURVE cannot be input as the first data.		

- Input SPIRAL data

	Operating procedure	Operation	Display	
1 To input SPIRAL data, press the \{F3\} key. *1)		\{F3\}	$\begin{aligned} & \text { F1: LINE } \\ & \text { F2: CURVE } \\ & \text { F3: SPIRAL } \\ & \text { F4: POINT } \end{aligned}$	
		SPIRAL $R=$ 0.000 L $=$ 0.000 m ----- [CLR] [ENT]		
	Input RADIUS. Press the $\{$ ENT $\}$ key.		Input RADIUS \{ENT\}	SPIRAL $\mathrm{R}:$ 03 $\mathrm{~L}=$ 100.000 m ----- 0.000 m [CLR] [ENT]
	Input LENGTH. Press the $\{E N T\}$ key.	Input LENGTH \{ENT\}		
	6 Select TURN (direction of turn): RIGHT or LEFT. 7 Press the \{ENT\} key. 8 Select DIR (direction): IN (entrance) or OUT (exit). 9 Press the $\{E N T\}$ key.		Select \{F1\} (LEFT) or \{F2\} (RIGHT) \{ENT\}	SPIRAL 03 TURN > RIGHT DIR : IN LEFT RIGHT --- ENTER
			Select \{F1\} (IN) or \{F2\} (OUT)	SPIRAL 03 TURN L LEFT DIR IN IN OUT --
				<SET!>
*1) SPIRAL cannot be input as the first data.				

- Input POINT data

| Operating procedure | Operation | Display |
| :--- | :--- | :--- | :--- | :--- | :--- |

6.7.3 Searching Data

To search for input data, carry out the following operating procedure.

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the $\{F 4\}$ ($\mathrm{P} \downarrow$), $\{F 2\},\{F 4\} k e y$ to get the programs menu on page 2/ 2.	$\begin{gathered} \{\mathrm{MENU}\} \\ \{\mathrm{F} 4\} \\ \{\mathrm{F} 2\} \\ \{\mathrm{F} 4\} \end{gathered}$	PROGRAMS $2 / 2$ F1:AREA F2: POINT TO LINE F3: ROAD P \downarrow
2 Press the $\{\mathrm{F} 3\},\{\mathrm{F} 1\},\{\mathrm{F} 2\},\{\mathrm{F} 2\}$ key. (唈 Refer to "Search data" on page 6-30.)	\{F3\} \{F1\} \{F2\} \{F2\}	DATA SEARCH F1:FIRST DATA F2:LAST DATA
3 To search from the first data, select \{F1\} (FIRST DATA).	\{F1\}	LINE $01 / 30$ L : 100.000 m AZ: $45^{\circ} 00^{\prime} 00^{\prime \prime}$ EDIT
4 To switch to different data, press the [\downarrow] or [\uparrow] key.	[\downarrow] or [\uparrow]	
		SPIRAL $30 / 30$ $\mathrm{R} \mathrm{:}$ 200.000 m L : 100.000 m EDIT

6.7.4 Editing Data

To edit input data, carry out the following operating procedure.

Operating procedure	Operation	Display
		LINE $01 / 30$ L : 100.000 m AZ: $45^{\circ} 00^{\prime} 00^{\prime \prime}$ EDIT
1 In DATA SEARCH, press the $\{\mathrm{F} 1\}$ key. 2 Edit the data.	$\{F 1\}$ Edit data	

6.7.5 Setting OCC and BS

To set the Occupied Point and Backsight Point, carry out the following operating procedure.

10 Collimate the backsight.

11 Press the $\{\mathrm{F} 3\}$ (YES) key.

Collimate Backsight

BACKSIGHT

 $\mathrm{H}(\mathrm{B})=45^{\circ} 00^{\prime} 00^{\prime \prime}$ >Sight? [YES] [NO]\{F3\}
<SET!>

SETOUT
F1: OCC\&BS F2: SETOUT ROAD F3:SELECT A FILE
*1) When setting the Occupied Point and Backsight Point using Resection method, select \{F2\} (RESECTION).
\mathbb{C} 承 For details of the Resection method, refer to Section 8.3.2 "Resection Method".

6.7.6 Stake-out Road

To setout the road, carry out the following operating procedure.

Operating procedure	Operation	Display
1 After pressing the \{MENU\} key, press the $\{F 4\}$ ($\mathrm{P} \downarrow$), $\{\mathbf{F} 2\},\{\mathbf{F} 4\}$ key to get the programs menu on page $2 /$ 2.	$\begin{gathered} \{\text { MENU }\} \\ \{F 4\} \\ \{F 2\} \\ \{F 4\} \end{gathered}$	$\begin{array}{llr}\text { PROGRAMS } & & 2 / 2 \\ \text { F1:AREA } & \\ \text { F2: POINT } & \text { TO } & \text { LINE } \\ \text { F3:ROAD } & & \text { P } \downarrow\end{array}$
2 Press the \{F3\}, \{F2\}, \{F2\} key. (\mathbb{C} 承 Refer to "Set out road" on page 6-30.)	$\begin{aligned} & \{F 3\} \\ & \{F 2\} \\ & \{F 2\} \end{aligned}$	$\begin{aligned} & \text { SETOUT ROAD } \\ & \text { CHAIN = } \\ & ----\quad[C L R] \quad \text { [ENT] } \end{aligned}$
3 Input data.	Input data	```SETOUT ROAD CHAIN=1200 [CLR] [ENT]```
4 Press the \{ENT\} key.	\{ENT\}	CHAIN 1200 $>$ CENTER LEFT RIGHT --- ENTER
5 Select offset. (Example: RIGHT) Press the \{F2\} key. *1)	\{F2\}	
6 Input the offset value.	Input offset value	
7 Press the \{ENT\} key. The setout point coordinates are displayed.	\{ENT\}	CHAIN: 1200 $\mathrm{~N}:$ 0.000 m $\mathrm{E}:$ 0.000 m $>\mathrm{OK}$ $?$
8 Press the $\{F 3\}$ (YES) key. The distance to the setout point and the backsight are displayed. HR: Calculated horizontal angle of the layout point HD: Calculated horizontal distance from the instrument to the layout point	\{F3\}	CALCULATED HR= $60^{\circ} 00^{\prime} 00 \prime \prime$ HD $=$ 100.000 m ANGLE DIST ---
9 Press the $\{$ F1\} (ANG) key. CHAIN: Layout point HR: Measured (Actual) horizontal angle. dHR: Horizontal angle to be turned to the layout point $=$ Actual horizontal angle - Calculated horizontal angle. Correct direction when $\mathrm{dHR}=0^{\circ} 00^{\prime} 00^{\prime \prime}$	\{F1\}	CHAIN: 1200 HR: $60^{\circ} 00^{\prime} 00^{\prime \prime}$ dHR: $0^{\circ} 00^{\prime} 00^{\prime \prime}$ DIST $--N^{\prime}$ NEZ
10 Press the $\{F 1\}$ (DIST) key. HD: Measuring (Actual) horizontal distance dHD: Horizontal distance to be turned to the layout point = Actual horizontal distance Calculated horizontal distance.	\{F1\}	$\begin{array}{\|rr\|}\text { HD* } & 100.000 \mathrm{~m} \\ \text { dHD: } & \\ & 0.000 \mathrm{~m} \\ \text { MODE } & \text { NEZ }\end{array}$

11 Press the $\{F 3\}$ (NEZ) key.
\{F3\}

12 Press the \{F4\} (NEXT) key to set next layout point.
\{F4\}
*1) If not selecting offset, press the \{ENT\} key.

6.7.7 Selecting a File

To set the coordinates to be used for the Occupied Point and Backsight Point, carry out the following operating procedure.

Operating procedure	Operation	Display
1 After pressing the $\{$ MENU $\}$ key, press the $\{F 4\}$ ($P \downarrow$), $\{\mathbf{F} 2\},\{\mathbf{F} 4\}$ key to get the programs menu on page $2 /$ 2.	$\begin{gathered} \{\mathrm{MENU}\} \\ \{\mathrm{F} 4\} \\ \{\mathrm{F} 2\} \\ \{\mathrm{F} 4\} \end{gathered}$	PROGRAMS $2 / 2$ F1:AREA F2: POINT TO FINE F3:ROAD P \downarrow
2 Press the \{F3\}, \{F2\} key. (\mathbb{C}	$\begin{aligned} & \{F 3\} \\ & \{F 2\} \end{aligned}$	```SETOUT F1:OCC&BS F2:SETOUT ROAD F3:SELECT A FILE```
3 Press the $\{\mathrm{F} 3\}$ key.	\{F3\}	
4 Enter the name of the file being used (or select it from the list).	Select a file	
5 Press the $\{E N T\}$ key.	\{ENT\}	

6.7.8 Initializing ROAD data

To initialize the data, carry out the following operating procedure.

Operating procedure	Operation	Display
1 After pressing the $\{$ MENU $\}$ key, press the $\{F 4\}$ ($\mathrm{P} \downarrow$), $\{F 2\},\{F 4\}$ key to get the programs menu on page $2 /$ 2.	$\begin{gathered} \{\text { MENU }\} \\ \{F 4\} \\ \{F 2\} \\ \{F 4\} \end{gathered}$	PROGRAMS $2 / 2$ F1: AREA F2: POINT TO LINE F3: ROAD
2 Press the $\{F 3\},\{F 3\}$ key. ([.	$\begin{aligned} & \{F 3\} \\ & \{F 3\} \end{aligned}$	INITIALIZE DATA ERASE ROAD DATA >OK ? \quad [NO] [YES]
3 When the $\{F 4\}$ (YES) key is pressed, all ROAD DATA with the exception of the coordinate data file is erased. Press the $\{\mathbf{F} 4\}$ key.	\{F4\}	

7 DATA COLLECTION

The GM is able to store the measured data into the internal memory.
The internal memory is shared by the measured data files and the coordinate data files.

- Measured data

The collected data is memorized into a files.

- The number of measurement points
(In case not using the internal memory in layout mode)
MAX. 50,000 points

Because the internal memory covers both data collection mode and layout mode, the number of measurement points will be decreased when the layout mode is used.
的 3 For the internal memory, refer to Chapter 9 "MEMORY MANAGER MODE".

- When turning off the power, ensure that you are in the main menu screen or main angle measurement mode.
This ensures completion of the memory access process and avoids possible damage to the stored data.
- It is recommended for safety to charge the battery beforehand and prepare fully charged spare batteries.

－Data collect menu operation

By pressing the \｛MENU\} key, the instrument will be in MENU $1 / 3$ mode．
Press the \｛F2\} (DATA COLLECT) key, the menu of data collect $1 / 2$ will be shown．

DATA COLLECTION MENU 1／2

DATA COLLECTION MENU $2 / 2$

Setting occupied point
［家 See Section 7．1．3＂Occupied Point and Backsight Point＂．

BACKSIGHT
Setting direction angle
当 See Section 7．1．3＂Occupied Point and Backsight Point＂．

Executing data collection
\mathbb{B} See section 7.2 ＂Operational Procedure of DATA COLLECT＂

SELECT A FILE
File can be selected for Data collect．
\mathbb{B} See Section 7．1．1＂Selecting a File for Data Collection＂．
$\xrightarrow{\text { \｛F2\} }} \xrightarrow{\text { PCODE INPUT }}$
Editing PCODE library
\mathbb{W} 家 See Section 7.6 ＂Editing PCODE Library ［PCODE INPUT］＂

\｛F3\}

CONFIG
Setting Parameter of Data Collect
［． 3 See Section 7.7 ＂Setting Parameter of Data Collect［CONFIG．］＂．

7.1 Preparation

7.1.1 Selecting a File for Data Collection

A file used by data collection mode must be selected at first.
Select a file before beginning data collection mode because selection screen of a file is displayed. And a selection from data collection menu is possible in the mode.

Operating procedure	Operation	Display
		MENU $1 / 4$ F1:TOP FIELD F2: DATA COLLECT F3: LAYOUT \quad P \downarrow
1 Press \{F2\} (DATA COLLECT) key from menu $1 / 4$.	\{F2\}	```SELECT A FILE FN:``` \qquad ```None ```
2 Press \{F2\} (LIST) key to display the list of file. *1)	\{F2\}	AMIDATA /M0123 \rightarrow HILDATA /M0345 TOPDATA /M0789 --- SRCH
3 Scroll file list by pressing $\{\boldsymbol{\nabla}\}$ or $\{\mathbf{\Delta}\}$ key and select a file to use. *2),3)	$\{\boldsymbol{\nabla}\}$ or $\{\mathbf{\Delta}\}$	TOPDATA /M0789 \rightarrow RAPDATA /M0564 SATDATA /M0456 --- SRCH
4 Press \{F4\} (ENTER) key. The file will be set and data collect $1 / 2$ menu will be shown.	\{F4\}	DATA COLLECT $1 / 2$ F1: OCC.PT\# INPUT F2: BACKSIGHT F3: FS/SS P \downarrow

*1) If you want to make a new file or input file name directly, press \{F1\} (INPUT) key and enter a file name.
2) When a file has been selected already, '' mark is indicated on left of current file name.
*3) Data in a file shown with arrow can be searched by pressing \{F2\} (SRCH) key.

Note

- It is possible to select a file from DATA COLLECT $2 / 2$ menu in the same way.

```
DATA COLLECT 2/2
    F1:SELECT A FILE
    F2:PCODE INPUT
    F3:CONFIG.

\subsection*{7.1.2 Selecting a Coordinate File for Data Collection}

When coordinate data in a coordinate data file are used for occupied point or backsight point, select a coordinate file from the data collect menu \(2 / 2\) beforehand
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & DATA COLLECT \(\quad 2 / 2\)
F1: SELECT A FILE
F2: PCODE INPUT
F3: CONFIG. P \(\downarrow\) \\
\hline 1 Press the \{F1\} (SELECT A FILE) key from DATA COLLECT menu 2/2. & \{F1\} & SELECT A FILE
F1:MEAS.DATA
F2: COORD.DATA \\
\hline 2 Press the \{F2\} (COORD.DATA) key. & \{F2\} & SELECT A FILE
FN:
INPUT LIST --- ENTER \\
\hline 3 Select a coordinate file in the same manner as Section 7.1.1 "Selecting a File for Data Collection". & & \\
\hline
\end{tabular}

\subsection*{7.1.3 Occupied Point and Backsight Point}

The occupied point and direction angle in the data collect mode are linked with the occupied point and direction angle in normal coordinate measurement.
It is possible to set or change the occupied point and direction angle from the data collect mode.
Occupied point can be set by two setting methods as follow.
- Setting from the coordinate data stored in the internal memory.
- Direct key input.

The following three setting methods for backsight point can be selected.
- Setting from the coordinate data stored in the internal memory.
- Direct key input of coordinate data.
- Direct key input of setting angle.

See 9.4 "Coordinate Data Direct Key Input" and 9.7.2 "Loading Data" for how to store coordinate into the internal memory.
- Example for setting the occupied point:

In case of setting occupied point from the coordinate data stored in the internal memory.
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F1\} (OCC.PT\# INPUT) key from the data collect menu \(1 / 2\). The previous data is shown. & \{F1\} & PT\# \(\quad \rightarrow\) PT-01
ID \(\quad:\)
INS. HT : \(\quad 0.000 \mathrm{~m}\)
INPUT
SRCH \\
\hline 2 Press the \{F4\} (OCNEZ) key. & \{F4\} & ```
OCC.PT
    PT#:PT-01
INPUT LIST NEZ ENTER
``` \\
\hline 3 Press the \{F1\} (INPUT) key and enter PT\#.*1) Press the \{F4\} (ENT) key. & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { Enter PT\# } \\
\{\mathrm{F} 4\}
\end{gathered}
\] & \begin{tabular}{|ccc|}
\hline \(\mathrm{N}:\) & 0.000 m \\
\(\mathrm{E}:\) & 0.000 m \\
\(\mathrm{Z}:\) & 0.000 m & \\
\(>\mathrm{OK} ?\) & {\([Y \mathrm{YS}]\)} & [NO]
\end{tabular} \\
\hline 4 Press the \{F3\} (YES) key. & \{F3\} & \begin{tabular}{l}
PT\# \(\rightarrow\) PT-11 \\
ID \(\quad:\) \\
INS. \\
INT: \(\quad 0.000 \quad\) m \\
INPUT \\
\hline
\end{tabular} \\
\hline 5 Enter ID, INS.HT in the same way. *2),3) & Enter ID,
INS.HT & PT\# : PT-11
ID \(:\)
INS. \(\mathrm{HT} \rightarrow \quad 1.335 \mathrm{~m}\)
INPUT
INRCH
REC OCNEZ \\
\hline 6 Press \{F3\} (REC) key. & \{F3\} & >REC ? [YES] [NO] \\
\hline \begin{tabular}{l}
7 Press \{F3\} (YES) key. \\
The display returns to the data collect menu \(1 / 2\).
\end{tabular} & \{F3\} & DATA COLLECT \(1 / 2\)
F1: OCC.PT\# INPUT
F2: BACKSIGHT
F3: FS/SS \(\quad\) P \(\downarrow\) \\
\hline
\end{tabular}
*1) 【ア Refer to Section 2.4 "How to Enter Alphanumeric Characters".
*2) ID can be input by inputting a register number linked with PCODE Library.
To show the list of PCODE library, press the \{F2\} (SRCH) key.
*3) Press the \{F3\} (REC) key when you do not input the INS.HT.

\section*{Note}
- The data recorded in data collect is PT\#, ID and INS.HT.
- If point is not found in internal memory "PT\# DOES NOT EXIST" is displayed.
- Example for setting the direction angle:

The following is to memorize the data of the backsight after setting the backsight point from point number.
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline \begin{tabular}{l}
1 Press the \{F2\} (BACKSIGHT) key from the data collect menu \(1 / 2\). \\
The previous data is shown.
\end{tabular} & \{F2\} & \[
\begin{array}{|llll}
\hline \text { BS\# } & \rightarrow & & \\
\text { PCODE } & : & & \\
\text { R.HT } & : & 0.000 & \mathrm{~m} \\
\text { INPUT } & \text { OSET } & \text { MEAS } & \text { BS }
\end{array}
\] \\
\hline 2 Press the \{F4\} (BS) key. *1) & \{F4\} & \begin{tabular}{l}
BACKSIGHT \\
PT\#: \\
INPUT LIST NE/AZ ENT
\end{tabular} \\
\hline 3 Press the \{F1\} (INPUT) key and enter PT\#. *2) & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { Enter PT\# } \\
\{\mathrm{F} 4\}
\end{gathered}
\] & \begin{tabular}{|ccc|}
\hline \(\mathrm{N}:\) & 0.000 m \\
\(\mathrm{E}:\) & 0.000 m \\
\(\mathrm{Z}:\) & 0.000 m & \\
\(>\mathrm{OK} ?\) & {\([Y \mathrm{ES}]\)} & [NO]
\end{tabular} \\
\hline \begin{tabular}{l}
4 Press the \(\{F 3\}\) (YES) key. \\
Enter PCODE,R.HT in the same way. *3),4)
\end{tabular} & \{F3\} & \begin{tabular}{llll}
\hline BS\# & \(\rightarrow\) PT-22 & \\
PCODE & \(:\) & & \\
R.HT & : & 0.000 & m \\
INPUT & OSET & MEAS & BS
\end{tabular} \\
\hline 5 Press the \{F3\} (MEAS) key. & \{F3\} & \[
\begin{array}{|llll}
\hline \text { BS\# } & \rightarrow \text { PT }-22 & \\
\text { PCODE } & : & & \\
\text { R. } \mathrm{HT} & \text { : } & 0.000 \quad \mathrm{~m} \\
\text { *VH } & \text { SD } & \text { NEZ } & \mathrm{NP} / \mathrm{P}
\end{array}
\] \\
\hline \begin{tabular}{l}
6 Collimate back sight point. \\
Select one of the measuring mode and press the soft key. \\
EXAMPLE: \{F2\} (Slope Distance) key.
\end{tabular} & \[
\begin{gathered}
\text { Collimate } \\
\text { BS } \\
\{F 2\}
\end{gathered}
\] & \begin{tabular}{|cc}
\hline V : & \(90^{\circ} 00^{\prime} 00^{\prime \prime}\) \\
HR: \(0^{\circ} 00^{\prime} 00^{\prime \prime}\) \\
SD*[n] & \(\lll m\) \\
\(>\) Measuring...
\end{tabular} \\
\hline \begin{tabular}{l}
Horizontal circle is set to calculated direction angle. Measuring starts. \\
Measuring result is memorized and the display returns to the data collect menu \(1 / 2\).
\end{tabular} & & \begin{tabular}{|cc|}
\multicolumn{1}{c|}{\(\downarrow\)} \\
\hline DATA COLLECT \(1 / 2\) \\
F1: OCC.PT\# INPUT \\
F2: BACKSIGHT \\
F3: FS/SS & \\
\hline
\end{tabular} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
*1) Pressing each time the \(\{\mathrm{F} 3\}\) key, the input method changes as Coordinate value, Angle, Coordinate point name alternatively. \\
*2) 『ア Refer to Chapter 2.4 "How to Enter Alphanumeric Characters". \\
*3) PCODE can be input by inputting a register number linked with PCODE Library. To show the list of PCODE library, press the \{F2\} (SRCH) key. \\
*4) Data collect sequence can be set to [MEAS \(\rightarrow\) EDIT]. [TB Refer to Section 7.7 "Setting Parameter of Data Collect [CONFIG.]".
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{Note} \\
\hline
\end{tabular}

\subsection*{7.2 Operational Procedure of DATA COLLECT}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{c|}{ Operating procedure } & Operation & Display \\
\hline
\end{tabular}
＊1）的
＊2）PCODE can be input by inputting a register number linked with PCODE Library． To show the list of PCODE library，press the \｛F2\} (SRCH) key.
＊3）Data collect sequence can be set to［MEAS \(\rightarrow\) EDIT］．［当 See to Section 7.7 ＂Setting Parameter of Data Collect［CONFIG．］＂．
＊4）The mark＂＊＂indicates the previous measuring mode．
＊5）You can confirm the measured data as follows．收了 Refer to Section 7.7 ＂Setting Parameter of Data Collect［CONFIG．］＂．
```

V : 90*10'20"
HR: 120*30'40"
SD: 98.765 m
> OK ? [YES][NO]

```

\section*{7．2．1 Searching the recorded data}

While executing the DATA COLLECT mode，you can search the recorded data．
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Operating procedure } & Operation & \multicolumn{1}{c|}{ Display } \\
\hline
\end{tabular}

\section*{7．2．2 Entering PCODE／ID using PCODE Library}

While executing the DATA COLLECT mode，you can enter PCODE／ID from PCODE Library．
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & \[
\begin{array}{ll}
\hline \text { PT\# } & : \text { PT }-02 \\
\text { PCODE } & \rightarrow \\
\text { R.HT } & : \\
\text { INPUT } & \text { SRCH }
\end{array}
\] \\
\hline 1 Move the arrow to the PCODE or ID in the DATA COLLECT mode，press the \｛F1\} (INPUT) key. & \｛F1\} & \[
\begin{array}{|l}
\hline \text { PT\# } \quad: \text { PT }-02 \\
\text { PCODE }=32 \\
\text { R.HT }: \quad 1.200 \mathrm{~m} \\
\text { [ALP] [SPC][CLR] [ENT] }
\end{array}
\] \\
\hline \begin{tabular}{l}
2 Enter a register number linked with PCODE library and press the \｛F4\} (ENT) key. \\
（Example） \\
Register number， \(32=\) TOPCON
\end{tabular} & Enter No \｛F4\} & \[
\begin{array}{ll}
\text { PT\# } & : \text { PT-02 } \\
\text { PCODE } & : \text { TOPCON } \\
\text { R.HT } & \rightarrow 1.200 \mathrm{~m} \\
\text { INPUT } & \text { SRCH MEAS ALL }
\end{array}
\] \\
\hline
\end{tabular}

\subsection*{7.2.3 Entering PCODE / ID from the list of PCODE}

You can also enter PCODE / ID from the list of PCODE.
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & \[
\begin{array}{|ll|}
\hline \text { PT\# } & : \text { PT }-02 \\
\text { PCODE } & \rightarrow \\
\text { R.HT } & : \\
\text { INPUT } & \text { SRCH } \\
\text { INEAS ALL }
\end{array}
\] \\
\hline 1 Move the arrow to the PCODE or ID in the DATA COLLECT mode, press the \{F2\} (SRCH) key. & \{F2\} & \[
\begin{aligned}
& \rightarrow 001: \text { PCODE01 } \\
& 002: \text { PCODE02 } \\
& \text { EDIT --- CLR ENTER }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
2 By pressing the following keys, the register number will increase or decrease. \\
\{ \(\boldsymbol{\Delta}\) \} or \(\{\nabla\) \}: Increasing or Decreasing one by one \\
\(\{>\}\) or \(\{\langle\) : By ten Increasing or Decreasing. *1)
\end{tabular} & \[
\begin{aligned}
& \{\Delta\} \text { or }\{\nabla\} \\
& \{\nabla\} \text { or }\{\Delta\}
\end{aligned}
\] & \[
\begin{gathered}
031: \text { PCODE31 } \\
\rightarrow 032: \text { TOPCON } \\
033: \text { HILTOP } \\
\text { EDIT --- CLR ENTER }
\end{gathered}
\] \\
\hline 3 Press the \{F4\} (ENTER) key. & \{F4\} & \begin{tabular}{|ll|}
\hline PT\# & \(:\) PT-02 \\
PCODE & \(: T O P C O N ~\) \\
R.HT & \(\rightarrow \quad 1.200 \mathrm{~m}\) \\
INPUT & SRCH MEAS ALL
\end{tabular} \\
\hline
\end{tabular}
*1) To edit the PCODE library, press the \{F1\} (EDIT) key.
To delete the PCODE registered with shown an arrow, press the \(\{F 3\}\) (CLR) key.
Note
- PCODE can be edited in DATA COLLECT menu \(2 / 2\) or MEMORY MANAGER menu \(2 / 3\).

\subsection*{7.3 Data Collect Offset Measurement mode}

This mode is useful when it is difficult to set up the prism directly, for example at the center of a tree. Data Collect. Offset Measurement has two measuring methods.
- Angle offset measurement
- Distance offset measurement
- Plane offset measurement
- Column offset measurement

\subsection*{7.3.1 Angle Offset Measurement}

Place the prism at the same horizontal distance from the instrument as that of point A0 to measure.

When measuring coordinates of ground point A1:Set the instrument height / prism height.

When measuring coordinates of point A 0 : Set the instrument height only. (Set the prism height to 0).

When sighting to \(A_{0}\), you can select one of two ways. One is to fix vertical angle to the prism position even up down the telescope position, and the other is to gear vertical angle to the up down of telescope movement. In case following the vertical angle to the movement of telescope, SD (Slope Distance) and VD (Vertical Distance) will be changed according to the movement of telescope.
\(\mathbb{\square}\) To set this option, refer to Chapter 17
"SELECTING MODE".
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Operating procedure } & Operation & \multicolumn{1}{c|}{ Display } \\
\hline
\end{tabular}

5 Press the \(\{\mathrm{F} 1\}\) (MEAS) key. Continuous measuring starts.

6 Collimate point A0 using the horizontal motion clamp and horizontal tangent screw.

7 Show the horizontal distance of point A0.

8 Show the relative elevation of point A0.
- Each time pressing \(\{\backslash \mid\}\) key, horizontal distance, relative elevation and slope distance are shown in sequence.
9 Show N coordinate of point A 0 or A 1 .
- Each time pressing \(\{\underset{\longrightarrow}{\longrightarrow}\}\) key, N,E and \(Z\) coordinate are shown in sequence.

10 Press the \(\{F 3\}\) (YES) key.

The data is recorded and the next measuring point is displayed.
\{F1\}
OFFSET-MEASUREMENT

HD*[n] < m
>measuring ...
\begin{tabular}{|cc|}
\hline \multicolumn{2}{|c|}{ OFFSET-MEASUREMENT } \\
HR: \(120^{\circ} 30^{\prime} 40 "\) \\
SD* & 12.345 m \\
\(>\) OK? & [YES] [NO] \\
\hline
\end{tabular}

Collimate
A0
\{ -1\(\}\)
\{ LI \(\}\)
\(\{\nmid\),
\{F3\}

OFFSET-MEASUREMENT
HR: \(123^{\circ} 30^{\prime} 40^{\prime \prime}\)
VD:
\(>0 \mathrm{~K}\) ?
0.843 m
[YES] [NO]

OFFSET-MEASUREMENT
HR: 123 \({ }^{\circ}\) 30'40"
\(\mathrm{N}: \quad-12.345 \mathrm{~m}\)
\(>0 \mathrm{~K}\) ?
[YES] [NO]
OFFSET-MEASUREMENT
HR: 123³0'40"
SD: \(\quad 12.345 \mathrm{~m}\) \(>0 \mathrm{~K}\) ?
[YES] [NO]
\begin{tabular}{|cc|}
\hline \multicolumn{2}{|c|}{ OFFSET-MEASUREMENT } \\
HR: & \(123^{\circ} 30^{\prime} 40 "\) \\
HD: & 6.543 m \\
>OK? & [YES] [NO] \\
\hline
\end{tabular}

PT\# \(\rightarrow\) PT-12
PCODE :TOPCON
R.HT : 1.200 m INPUT SRCH MEAS ALL

\subsection*{7.3.2 Distance Offset Measurement}

The measurement of a place apart from a prism is possible by inputting offset horizontal distance of front and back / right and left.

When measuring coordinates of ground point \(A_{1}\) : Set the instrument height / prism height.
When measuring coordinates of point \(A_{0}\) : Set the instrument height only.
(Set the prism height to 0).
\begin{tabular}{|l|l|l|}
\hline \multicolumn{1}{|c|}{ Operating procedure } & Operation & \multicolumn{1}{c|}{ Display } \\
\hline
\end{tabular}

5 Enter Forward direction offset value. *1)

6 Collimate the prism.
7 Press the \(\{\mathrm{F} 2\}\) or \(\{\mathrm{F} 3\}\) key.
Example: \(\{F 3\}\) (NEZ) key
Measuring starts.

The data is recorded and the next measuring point is displayed.

*1) To skip entering, press the \(\{F 3\}\) (SKP) key.

\subsection*{7.3.3 Plane Offset Measurement}

Measuring will be taken for the place where direct measuring can not be done, for example distance or coordinate measuring for a edge of a plane.
Three random points (P1, P2, P3) on a plane will be measured at first in the plane offset measurement to determine the measured plane. Collimate the measuring point (P0) then the instrument calculates and displays coordinate and distance value of cross point between collimation axis and of the plane.

\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & \begin{tabular}{|lll|}
\hline PT\# & \(\rightarrow\) PT-11 \\
PCODE & \(:\) TOPCON \\
R.HT & \(: \quad 1.200 ~ m\) \\
INPUT & SRCH MEAS & ALL
\end{tabular} \\
\hline 1 Press the \(\{\) F3\} (MEAS) key and press the \{F4\}key to get to the next soft key page. & \[
\begin{aligned}
& \{F 3\} \\
& \{F 4\}
\end{aligned}
\] & \begin{tabular}{|llrl|}
\hline PT\# & \(\rightarrow\) PT-11 & \\
PCODE & : TOPCON & \\
R.HT & : & 1.200 & m \\
VH & *SD & NEZ & P1 \(\downarrow\) \\
\hline OFSET & PTL & NP/P & P2 \(\downarrow\) \\
\hline
\end{tabular} \\
\hline 2 Press the \{F1\} (OFSET) key. & \{F1\} & \begin{tabular}{lll}
\hline OFFSET & \(1 / 2\) \\
F1: ANG. OFFSET & \\
F2: DIST. OFFSET & \\
F3: PLANE OFFSET & P \(\downarrow\)
\end{tabular} \\
\hline 3 Press the \{F3\} (PLANE OFFSET) key. & \{F3\} & \[
\begin{array}{|lc|}
\hline \text { PLANE } & \\
\text { NOO1\# : } & \\
\text { SD: } & \mathrm{m} \\
\text { MEAS } & --\quad N P / P^{---}
\end{array}
\] \\
\hline \begin{tabular}{l}
4 Collimate prism P1, and press the \{F1\} (MEAS) key. \\
Measuring will start. \\
After measuring, the display will show the second point measurement.
\end{tabular} & \[
\begin{gathered}
\text { Collimate } \\
\text { P1 } \\
\{\mathrm{F} 1\}
\end{gathered}
\] & ```
PLANE
N001#:
 SD* [n] << m
>Measuring...
``` \\
\hline
\end{tabular}

5 Measure the second and third points in the same way. *1)

The display changes to PT\# input in the plane offset measurement.
Input point number if necessary.

6 Press the \{F4\} (MEAS) key.
The instrument calculates and displays coordinate and distance value of cross point between collimation axis and of the plane. *2)

7 Collimate the edge (PO) of the plane. *3), 4)

8 To show the slope distance (SD), press the \(\{\triangle \mid\}\) key.
- Each time pressing the \(\{\underline{Z}\) \} key, horizontal distance, relative elevation and slope distance are shown in sequence.
- To show coordinate value of point P0, press the

9 Press the \{F3\} (YES) key. Next offset point number will be displayed.

10 To escape the measuring, press the \{ESC \(\}\) key. The display returns to the next point number in data collect mode.

*1) In case the calculation of plane was not successful by the measured three points, error displays. Start measuring over again from the first point.
*2) Data display is the mode beforehand of offset measurement mode.
*3) Error will be displayed when collimated to the direction which does not cross with the determined plane.
*4) The reflector height of the target point P0 is set to zero automatically

\subsection*{7.3.4 Column Offset Measurement}

If it is possible to measure circumscription point (P1) of column directly, the distance to the center of the column (P0), coordinate and direction angle can be calculated by measured circumscription points (P2) and (P3).
The direction angle of the center of the column is \(1 / 2\) of total direction angle of circumscription points (P2) and (P3).


Example: Non-prism measurement
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & \begin{tabular}{lll}
\hline PT\# & \(\rightarrow\) PT-11 & \\
PCODE & :TOPCON & \(N_{P}\) \\
R.HT & : \(1.200 ~ m\) \\
INPUT & SRCH MEAS & ALL
\end{tabular} \\
\hline 1 Press the \{F3\} (MEAS) key and press the \{F4\}key to get to the next soft key page. & \[
\begin{aligned}
& \{\mathrm{F} 3\} \\
& \{\mathrm{F} 4\}
\end{aligned}
\] & \begin{tabular}{llll}
\hline PT\# & \(\rightarrow\) PT-11 & \\
PCODE & : TOPCON & \(\mathrm{N}_{\mathrm{P}}\) \\
R. HT & : & 1.200 & m \\
VH & *SD & NEZ & P1 \(\downarrow\) \\
\hline OFSET & PTL & NP/P & P2 \(\downarrow\) \\
\hline
\end{tabular} \\
\hline 2 Press the \{F1\} (OFSET) key. & \{F1\} & \begin{tabular}{llr}
\hline OFFSET & & \(1 / 2\) \\
F1: ANG. & OFFSET & \(\mathrm{N}_{\mathrm{P}}\) \\
F2: DIST. & OFFSET & \\
F3: PLANE OFFSET & \(\mathrm{P} \downarrow\)
\end{tabular} \\
\hline 3 Press the \(\{\mathrm{F} 4\}\) (P1 \(\downarrow\) ) key. & \{F4\} & \begin{tabular}{l}
OFFSET
\[
2 / 2
\] \\
\(\mathrm{P} \downarrow\)
\end{tabular} \\
\hline 4 Press the \(\{\mathrm{F} 1\}\) (COLUMN OFFSET) key. & \{F1\} &  \\
\hline \begin{tabular}{l}
5 Collimate the center of the column (P1) and press the \(\{F 1\}\) (MEAS) key. \\
Measuring will start. After the measurement, angle measuring display of the left side (P2) will be shown.
\end{tabular} & \[
\begin{gathered}
\text { Collimate } \\
\text { P1 } \\
\{F 1\}
\end{gathered}
\] & ```
COLUMN OFFSET
    Center N
    HD* [n] << m
>Measuring...
``` \\
\hline
\end{tabular}

6 Collimate the left side of the column (P2) and press the \{F4\} (SET) key.
After the measurement, angle measuring display of the right side (P3) will be shown.

7 Collimate the right side of the column (P3) and press the \{F4\} (SET) key.

The distance between the instrument and center of the column (PO) will be calculated.

To show the relative elevation (VD), press the \{ \(\\) \} key.
Each time pressing the \(\{\leq \mid\}\) key, horizontal distance, relative elevation and slope distance are shown in sequence.
To show coordinate of point P0, press the \(\{\not \longmapsto\), \(\}\) key.
8 Press the \{F3\} (YES) key. The display returns to the next point number in data collect mode.

\subsection*{7.4 NEZ Auto Calculation}

As measured data is collected, coordinates are calculated and stored for traverse or topo collection. Automatic making out function of coordinate data sets up in CONFIG of data collect.
收 3 Refer to Section 7.7 "Setting Parameter of Data Collect [CONFIG.]".
As a default, coordinate data calculated will be saved in a file of the same name as the measurement data file.
When the coordinate data file of the same name as the measurement data file does not exist, it will be generated automatically.
It is possible to change a file for saving coordinate data in the DATA COLLECT Menu \(2 / 2\) (F1:SELECT A FILE).
To calculate a coordinate data, it is necessary to add a point number in Data Collect execution.
When a coordinate data of the same point number exist already, it can be replaced with the new data by confirming display.

\section*{Note}
- Coordinates will be calculated using the grid factor.
\(\mathbb{\square}\) To set the grid factor, see Section 6.2 "Setting the GRID FACTOR".

\subsection*{7.5 Point to Line Measurement}

In this mode, a offsetting point from a certain determined line can be measured.

7.5.1 To change to the point to line measurement

\subsection*{7.5.2 Executing a point to line measurement}
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline \begin{tabular}{l}
Conduct data measurement according to the same procedure as with ordinary FS/SS (ALL can also be selected). However, when you conduct observation in the angle mode, PTL data will not be displayed (only the raw data will be recorded, upon which the operation will end). \\
1 Press the \{F3\} (MEAS) key.
\end{tabular} & \{F3\} & \\
\hline \begin{tabular}{l}
2 Press the \{F2\} (SD) key. \\
If the PTL mode is on, then, after the coordinate data is calculated, the PTL data will be displayed regardless of the coordinate check setting, etc.
\end{tabular} & \{F2\} & V : \(90^{\circ} 10^{\prime} 20^{\prime \prime}\)
HR: \(120^{\circ} 30^{\prime} 40^{\prime \prime}\)
SD* \(<m\)
\(>\) Measuring.... \\
\hline 3 PTL measurement data will display. Confirm the data and press \{F3\} (YES) key. The recorded data are measured data and coordinate data generated at the same time as a PTL data. & \{F3\} & \begin{tabular}{l}
\begin{tabular}{|lr|}
\hline L: & 44.789 m \\
\(\mathrm{O}:\) & 33.456 m \\
E: & 2.321 m \\
>REC? & [YES] [NO] \\
\hline
\end{tabular} \begin{tabular}{|l|l|}
\hline PT\#PTL \(\rightarrow\) PT-02 \\
PCODE & \(:\) TOPCON \\
R.HT & : \\
INPUT & SRCH MEAS ALL
\end{tabular} \\
\hline
\end{tabular} \\
\hline \multicolumn{3}{|l|}{- In the PTL measurement mode, NEZ Auto Calculation will be turned on compulsorily and the coordinate data will be stored into a coordinate file.} \\
\hline
\end{tabular}

\subsection*{7.6 Editing PCODE Library [PCODE INPUT]}

PCODE data can be entered into PCODE Library in this mode.
A PCODE is liked with a number of 1 to 50 .
PCODE can be also edited in MEMORY MANAGER menu \(2 / 3\) in the same way.
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & DATA COLLECT \(\quad 2 / 2\)
F1:SELECT A FILE
F2: PCODE INPUT
F3: CONFIG. \\
\hline & & \[
\left\lvert\, \begin{array}{lll}
\rightarrow 001: \text { TOPCON } \\
002: \text { TOKYO } \\
\text { EDIT --- CLR --- }
\end{array}\right.
\] \\
\hline \begin{tabular}{l}
2 By pressing the following keys, the list will increase or decrease. \\
\(\{\Delta\}\) or \(\{\nabla\) \}: Increasing or Decreasing one by one. \(\{>\}\) or \(\{4\) : By ten Increasing or Decreasing.
\end{tabular} & \[
\begin{aligned}
& \{\Delta\} \text { or }\{\nabla\} \\
& \{\nabla\} \text { or }\{\Delta\}
\end{aligned}
\] & 011 : URAH
\(\rightarrow 012\) : AMIDAT
013 : HILLTO
EDIT --- CLR --- \\
\hline 3 Press the \{F1\} (EDIT) key. & \{F1\} & \(011:\) URAH
\(\rightarrow 012=A M I D A T\)
\(013: \overline{H I L L T O}\)
[ALP] [SPC] [CLR] [ENT] \\
\hline 4 Enter PCODE and press the \{F4\} (ENT) key. *1) & Enter
PCODE \{F4\} & \begin{tabular}{|cc|}
\hline 011 : URAH & \\
\(\rightarrow 012\) : AMISUN & \\
013 : HILLTO & \\
EDIT --- CLR ---
\end{tabular} \\
\hline \multicolumn{3}{|l|}{*1) [CF Refer to Section 2.4 "How to Enter Alphanumeric Characters".} \\
\hline
\end{tabular}

\subsection*{7.7 Setting Parameter of Data Collect [CONFIG.]}

In this mode, the following settings of data collect mode are possible.
- Setting Items
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Menu } & Selecting Item & \multicolumn{1}{c|}{ Contents } \\
\hline F1:DIST MODE & \begin{tabular}{l}
FINE / CRS(1) / \\
CRS(10)
\end{tabular} & \begin{tabular}{l}
Select Fine /Coarse(1) /Coarse(10) mode in distance \\
measurement mode. \\
The unit to be displayed is as follows. \\
Fine mode: \(1 \mathrm{~mm}(0.1 \mathrm{~mm})\) \\
Coarse (1) mode: 1 mm \\
Coarse (10) mode: 10 mm
\end{tabular} \\
\hline F2:HD/SD & HD/SD & \begin{tabular}{l}
Select the distance measurement mode Horizontal \\
Distance or Slope distance.
\end{tabular} \\
\hline F3:MEAS. SEQ. & \begin{tabular}{c}
N-TIMES / \\
SINGLE / REPEAT
\end{tabular} & \begin{tabular}{l}
Select to set measurement mode for distance \\
measurement.
\end{tabular} \\
\hline F1:DATA CONFIRM & YES/NO & \begin{tabular}{l}
It is possible to confirm the result of measuring data \\
before the data is recorded.
\end{tabular} \\
\hline F2:COLLECT SEQ. & [EDIT \(\rightarrow\) MEAS]/ \\
[MEAS \(\rightarrow\) EDIT]
\end{tabular}\(\quad\)\begin{tabular}{l}
Select the procedure of data collection. \\
[EDIT \(\rightarrow\) MEAS]: Measurement is carried out after \\
entering other data. \\
[MEAS \(\rightarrow\) EDIT]: Measurement is carried out before \\
entering other data.
\end{tabular}

\section*{How to Set Items}

Example Setting: DATA CONFIRM: YES
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Operating procedure } & Operation & Display \\
\hline
\end{tabular}

\section*{8 LAYOUT}

LAYOUT mode has two functions which are setting of layout points and setting new points using coordinate data in the internal memory.
Also, if the coordinate data is not stored in the internal memory, this can be input from keyboard. The coordinate data is loaded from PC to the internal memory via RS-232C.
- The coordinate data

The coordinate data is memorized into a file.
[3 For the internal memory, refer to Chapter 9 "MEMORY MANAGER MODE".
The GM is able to store the coordinate data into the internal memory.
The internal memory is shared by the measured data and the coordinate data for layout.
Maximum 99 files can be generated.

\section*{- The number of coordinate data}
(In case not using the internal memory in the data collect mode)
```

MAX. 50,000 points

```

Because the internal memory covers both data collection mode and layout mode, the number of coordinate data will be decreased when the data collection mode is used.

\section*{Note}
- When turning off the power, ensure that you are in the main menu screen or main angle measurement mode.
This ensures completion of the memory access process and avoids possible damage to the stored data.
- It is recommended for safety to charge the battery beforehand and prepare fully charged spare batteries.
- When recording new point data, remember to consider the amount of internal memory available.

\section*{- Layout menu operation}

By pressing the \(\{\) MENU \(\}\) key, the instrument will be in MENU \(1 / 4\) mode.
Press the \(\{F 3\}\) (LAYOUT) key, the menu of layout \(1 / 2\) will be shown.

\subsection*{8.1 Preparation}

\subsection*{8.1.1 Setting the GRID FACTOR}
- Calculation Formula
1) Elevation Factor
\[
\text { Elevation Factor }=\frac{R}{R+E L E V .} \quad \begin{aligned}
& R \\
& E L E V .: \text { The average radius of the earth } \\
& \text { The elion above mean sea level }
\end{aligned}
\]
2) Scale Factor

Scale Factor : Scale Factor at the surveying station
3) Grid Factor

Grid Factor \(=\) Elevation Factor \(\times\) Scale Factor

\section*{Distance Calculation}
1) Grid Distance
\[
\begin{array}{ll}
H D g=H D \times \text { Grid Factor } \quad H D g: \text { Grid distance } \\
H D: \text { Ground distance }
\end{array}
\]
2) Ground Distance
\[
H D=\frac{H D g}{\text { Grid Factor }}
\]
- How to Set Grid Factor

\subsection*{8.1.2 Selecting Coordinate Data File}

You can execute a Layout from selected coordinate data file, also you can record New point measured data into the selected coordinate data file.
- The only coordinate data file existing can be selected and you can not make a new file in this mode. For more information about File, refer to Chapter 9 "MEMORY MANAGER MODE".
- When LAYOUT MODE is begun, a file can be selected in the same way.
\begin{tabular}{ll|l|l|}
\hline \multicolumn{1}{|c|}{ Operating procedure } & Operation & Display \\
\hline
\end{tabular}

\subsection*{8.1.3 Setting Occupied Point}

Occupied point can be set by two setting methods as follow.
1) Setting from the coordinate data stored in the internal memory.
2) Direct key input of coordinate data.
- Example setting: Setting the occupied point from the internal coordinate data file
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F1\} (OCC.PT INPUT) key from the Layout menu 1/2. & \{F1\} & ```
OCC.PT
 PT# :
```

$\qquad$

```
INPUT LIST NEZ ENTER
``` \\
\hline 2 Press the \{F1\} (INPUT) key and enter PT\#. *1) Press the \{F4\} (ENT) key. & \begin{tabular}{l}
\{F1\} \\
Enter PT\# \\
\{F4\}
\end{tabular} & \[
\begin{aligned}
& \text { OCC. PT } \\
& \text { PT\# = PT- } 01 \\
& \text { [ALP] [SPC] [CLR] [ENT] }
\end{aligned}
\] \\
\hline 3 Enter INS.HT in the same way. & Enter INS.HT
\[
\{F 4\}
\] &  \\
\hline The display returns to layout menu 1/2. & & \begin{tabular}{|lr|}
\hline LAYOUT & \(1 / 2\) \\
F1:OCC.PT INPUT & \\
F2: BACKSIGHT & \\
F3: LAYOUT & P \(\downarrow\) \\
\hline
\end{tabular} \\
\hline \multicolumn{3}{|l|}{*1) [T3 Refer to Section 2.4 "How to Enter Alphanumeric Characters".} \\
\hline
\end{tabular}
- Example setting: Setting Instrument point coordinates directly
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F1\} (OCC.PT INPUT) key from the Layout menu 1/2. & \[
\{F 1\}
\] & \begin{tabular}{l}
OCC.PT \\
PT\# : \(\qquad\) \\
INPUT LIST NEZ ENTER
\end{tabular} \\
\hline 2 Press the \{F3\} (NEZ) key. & \{F3\} & \begin{tabular}{|cc|}
\hline \(\mathrm{N} \rightarrow\) & 0.000 m \\
\(\mathrm{E}:\) & 0.000 m \\
\(\mathrm{Z}:\) & 0.000 m \\
INPUT & \(-\mathrm{P}^{2} \#\) \\
\hline
\end{tabular} \\
\hline 3 Press the \{F1\} (INPUT) key and enter coordinate value. press the \{F4\} (ENT) key. *1) & \begin{tabular}{l}
\{F1\} \\
Enter coord.
\[
\{\mathrm{F} 4\}
\]
\end{tabular} & COORD.DATA INPUT PT\# :
INPUT --- --- ENTER \\
\hline 4 Press the \{F1\} (INPUT) key and enter PT\#. Press the \{F4\} (ENT) key. *2) & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { Enter PT\# } \\
\{\mathrm{F} 4\}
\end{gathered}
\] & \begin{tabular}{l}
INSTRUMENT HEIGHT INPUT \\
\(\left.\begin{array}{ccc}\text { INS.HT }=0.000 & \mathrm{~m} \\ --- & -- & {[C L R]}\end{array}\right]\)
\end{tabular} \\
\hline 5 Enter Instrument Height in the same way. & Enter INS.HT \{F4\} & \begin{tabular}{lr}
\hline LAYOUT & \(1 / 2\) \\
F1: OCC.PT INPUT & \\
F2: BACKSIGHT & \\
F3: LAYOUT & P \(\downarrow\)
\end{tabular} \\
\hline \multicolumn{3}{|l|}{*1) [TB Refer to Section 2.4 "How to Enter Alphanumeric Characters".} \\
\hline
\end{tabular}

\subsection*{8.1.4 Setting Backsight Point}

The following three setting methods for Backsight point can be selected.
1) Setting from the coordinate data file stored in the internal memory.
2) Direct key input of coordinate data.
3) Direct key input of setting angle.
- Example setting: Setting the backsight point from the internal coordinate data file

- Example setting: Setting the backsight point coordinates directly
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline \begin{tabular}{l}
1 Press the \{F2\} (BACKSIGHT) key from the Layout menu 1/2. \\
The previous data is shown.
\end{tabular} & \{F2\} & \begin{tabular}{l}
BACKSIGHT \\
PT\# : \(\qquad\) \\
INPUT LIST NE/AZ ENT
\end{tabular} \\
\hline 2 Press the \(\{F 3\}\) (NE/AZ) key. & \{F3\} & \begin{tabular}{|cc|}
\hline \(\mathrm{N} \rightarrow\) & \\
\(\mathrm{E}:\) & m \\
& \\
INPUT --- & AZ \\
& ENTER \\
\hline
\end{tabular} \\
\hline \begin{tabular}{l}
3 Press the \{F1\} (INPUT) key and enter coordinate value. \\
Press the \{F4\} (ENT) key. *1), 2)
\end{tabular} & \begin{tabular}{l}
\{F1\} \\
Enter coord.
\[
\{F 4\}
\]
\end{tabular} & \[
\begin{aligned}
& \text { BACKSIGHT } \\
& \text { H(B)= } 0^{\circ} 00^{\prime} 00 " \\
& \text { >Sight ? [YES][NO] }
\end{aligned}
\] \\
\hline 4 Sight the backsight point. & Sight BK & \\
\hline \begin{tabular}{l}
5 Press the \(\{F 3\}\) (YES) key. \\
The display returns to the layout menu \(1 / 2\).
\end{tabular} & \{F3\} & \begin{tabular}{|lr|}
\hline LAYOUT & \(1 / 2\) \\
F1:OCC.PT INPUT & \\
F2: BACKSIGHT & \\
F3: LAYOUT & P \(\downarrow\) \\
\hline
\end{tabular} \\
\hline \multicolumn{3}{|l|}{*1) 㜿 Refer to Section 2.4 "How to Enter Alphanumeric Characters".} \\
\hline
\end{tabular}

\subsection*{8.2 Executing a Layout}

The following methods can be selected for executing a Layout:
1) Recalling points from internal memory by point number.
2) Direct key input of coordinate values.

Example setting: Recalling point from internal memory.
\begin{tabular}{|l|l|ll|}
\hline \multicolumn{1}{c|}{ Operating procedure } & Operation & Display \\
\hline
\end{tabular}

7 When the display value \(\mathrm{dHR}, \mathrm{dHD}\) and dZ are equal to 0 , the layout point is established. \({ }^{*} 3\) )

8 Press the \{F2\} (NEZ) key.
The coordinate data is shown.
\{F2\}
```

N * 100.000 m
$\mathrm{E}: \quad 100.000 \mathrm{~m}$
Z :
1.015 m MODE ANGLE NP/P NEXT

```

9 Press the \{F4\} (NEXT) key to set next layout point. PT\# is automatically incremented.

LAYOUT
PT\#: LP-101

INPUT LIST NEZ ENTER
*1) \(\mathbb{C} 3\) Refer to Section 2.4 "How to Enter Alphanumeric Characters".
*2) Point number could not be entered when data to comply with the coordinate value does not exist in the file.
*3) Cut \& Fill displaying function is available. 收实 Refer to Chapter 17 "SELECTING MODE".

\subsection*{8.2.1 Layout of Coordinates of Point to Line}

The coordinate data of point to line can be used during execution of layout.
When a point name including PTL coordinates (including 'From' and 'To' data) is specified, the mode will change to PTL mode automatically.
There are two ways to enter the PTL coordinate data, Direct key input and Data transfer.
\(\mathbb{C}\) Refer to 9.4.2 "PTL (Point to Line) data input" and 9.7 "Data Communications".

\begin{tabular}{|l|c|lll|}
\hline \multicolumn{1}{|c|}{ Operating procedure } & Operation & Display \\
\hline
\end{tabular}

\subsection*{8.3 Setting a New Point}

New point is required for example when a layout point cannot be sighted from existing control points.

\subsection*{8.3.1 Side Shot Method}

Set up the instrument at a known point, and measure the coordinate of the new points by the side shot method

\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Operating procedure } & Operation & Display \\
\hline
\end{tabular}

6 Press the \{F4\} (ENTER) key. The file will be set.

7 Press the \{F1\} (INPUT) key, and enter the new point name. *4)
Press the \{F4\} (ENT) key.

8 Enter reflector height in the same way.

9 Collimate the new point, and press the \{F1\} (MEAS) key.
Distance measuring starts.
\begin{tabular}{|c|c|}
\hline \{F4\} & \begin{tabular}{l}
SIDE SHOT \\
PT\#: \\
INPUT SRCH --- ENTER
\end{tabular} \\
\hline \begin{tabular}{l}
\{F1\} \\
Enter PT\# \{F4\}
\end{tabular} & \[
\begin{aligned}
& \text { REFLECTOR HEIGHT } \\
& \text { INPUT } \\
& \text { R.HT }=0.000 \mathrm{~m} \\
& -----\quad \text { [CLR] [ENT] }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Enter R.HT } \\
& \quad\{\mathrm{F} 4\}
\end{aligned}
\] & REFLECTOR HEIGHT INPUT
\[
\begin{array}{llrl}
\text { R.HT } & : & 1.235 \mathrm{~m} \\
\text { MEAS } & -- & \text { NP } / \mathrm{P} & ---
\end{array}
\] \\
\hline Collimate \{F1\} &  \\
\hline \{F3\} & \begin{tabular}{l}
SIDE SHOT \\
PT\#: NP-101 \\
INPUT SRCH --- ENTER
\end{tabular} \\
\hline
\end{tabular}

Press the \{F3\} (YES) key.*5)
The name and coordinate value are stored into COORD.DATA.
The input menu for next new point is displayed. PT\# is automatically incremented.
REFLECTOR HEIGHT
INPUT
R.HT : 1.235 m
MEAS --- NP/P ---

SIDE SHOT


PT\#:NP-101
*1) If you want to input file name directly, press the \{F1\} (INPUT) key and enter a file name.
\(\left.{ }^{*} 2\right)\) When a file has been selected already, '*' mark is indicated on left of current file name.
\(\mathbb{\square}\) For the file discrimination mark (*, @, \&), refer to Chapter 9.3 "File Maintenance".
*3) Data in a file shown with arrow can be searched by pressing \{F2\} (SRCH) key.
*4) 【予 Refer to Section 2.4 "How to Enter Alphanumeric Characters".
*5) An error will be displayed when the internal memory is full.

\subsection*{8.3.2 Resection Method}

Set up the instrument at a new point, and calculate the coordinate of the new point using the coordinate data of maximum seven known points and the measurements made to these points.
By following observation, resection is possible.
- Resection by distance measurement: 2 or more points must be measured
- Resection by angle measurement only: 3 or more points must be measured

An occupied point coordinate value will be calculated by the method of least squares.
(In case that 3 known points are measured by angle measurement only, the value would not be calculated by the method of least squares.)

\begin{tabular}{|l|c|cc|}
\hline \multicolumn{1}{|c|}{ Operating procedure } & Operation & Display \\
\hline
\end{tabular}
5 Enter instrument height in the same way.
6 Enter the known point A number. *3)
Enter reflector height.
8 Collimate the known point A, and press the \(\{\mathrm{F} 1\}\)
(ANG) or \{F2\} (DIST) key.
Example:\{F2\} (DIST)
Distance measuring starts.
Known point B entering display will be shown.
9 Same as procedure 6 to 8 proceed to the known point \(B\).
When two points have been measured by the \{F2\} (DIST) key, the RESIDUAL ERROR will be calculated. *4)
10 Select GRID FACTOR for calculation of RESIDUAL ERROR by pressing \{F1\} or \{F2\} key. *5)
Example: \(\{\) F1\}
11 Press the \{F1\} (NEXT) key to measure other points.
Maximum seven points can be measured.
12 Same as procedure 6 to 8 proceed to the known point \(C\).
Enter
INS.HT
\(\{\mathrm{F} 4\}\)
\{F1\} Enter PT\# \{F4\}

Enter R.HT \{F4\}

Collimate A \{F2\}
\{F1\}
\begin{tabular}{|ll|}
\hline \(\begin{array}{l}\text { REFLECTOR } \\
\text { INPUT } \\
\text { R.HT }\end{array}\) \\
\(\begin{array}{c}\text { HEIGHT } \\
-----\end{array} \quad 0.000 \mathrm{~m}\) \\
[CLR] [ENT]
\end{tabular}
NO03\#
    PT\# :
INPUT LIST NEZ ENTER
```

 PT#:
    ```
```

 PT#:
    ```
\(\qquad\)
```

INPUT LIST NEZ ENTER

```
```

INPUT LIST NEZ ENTER

```

REFLECTOR HEIGHT INPUT
R.HT : 1.235 m

ANG DIST NP/P ---

```

RESIDUAL ERROR

```
RESIDUAL ERROR
dHD= 0.015 m
dHD= 0.015 m
dZ = 0.005 m
dZ = 0.005 m
NEXT ---
NEXT ---
    G.F. CALC
```

 G.F. CALC
    ```
\(\qquad\)


13 Press the \{F4\} (CALC) key. *6)
\{F4\}


14 Press the \{F2\} ( \(\downarrow\) ) key.
Standard Deviations of each coordinate will be shown.
Unit: (mm) or (inch)
The display will be changed alternately by pressing \(\{\mathbf{F} 2\}(\downarrow)\) or ( \(\uparrow\) ) key.
15 Press the \{F4\} (NEZ) key. Coordinate data of the new point will be shown.

16 Press the \{F3\} (YES) key. *7)
\{F3\}
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \hline S D(n) \\
& S D(e) \\
& S D(z)
\end{aligned}
\]} & & 1.23 & mm \\
\hline & : & 1.23 & mm \\
\hline & : & 1.23 & mm \\
\hline --- & \(\uparrow\) & --- & NEZ \\
\hline \multicolumn{2}{|l|}{N} & 65.432 & \\
\hline \multicolumn{2}{|l|}{} & 876.543 & \\
\hline \multicolumn{2}{|l|}{Z} & 1.234 & \\
\hline >REC ? & & [YES] & [NO] \\
\hline
\end{tabular}

The new point data will be stored into the coordinate data file and the value of occupied coordinate data will change to that of the calculated NEW POINT.

The display returns to new point menu.
```

NEW POINT
F1:SIDE SHOT
F2:RESECTION

```
*1) 【予 Refer to Section 2.4 "How to Enter Alphanumeric Characters".
*2) When there is no need to memorize the new point data, press the \{F3\} (SKP) key.
*3) To enter the known point coordinate data by direct key inputting, press the \{F3\} (NEZ) key.
*4) RESIDUAL ERROR;
dHD (Horizontal distance between two known points) \(=\) Measured value - Calculated value \(d Z=(Z\) coordinate of the new point calculated from known point \(A)-(Z\) coordinate of the new point calculated from known point B)
*5) [F1:USE LAST DATA]; RESIDUAL ERROR is calculated with GRID FACTOR already set. [F2:CALC MEAS.DATA]; RESIDUAL ERROR is calculated without GRID FACTOR already set. In this case, new GRID FACTOR is calculated from measured data and reset."
- To see the GRID FACTOR value, press the \{F3\} (G.F.) key.
*6) In case that the all points are measured by angle measurement only, the following display will be shown. You can select \(Z\) coordinate calculation.

CALC. Z COORD.
F1: YES
F2: NO

F1(YES): :N,E,Z coordinates will be calculated with measured angle data.
\(\mathrm{F} 2(\mathrm{NO}): \quad: \mathrm{N}\) and E coordinates will be calculated with measured horizontal angle data. Z coordinate would not be calculated.
( \(Z\) coordinate value \(=0.000 \mathrm{~m}\) )
When the distance measurement is done even one point, \(Z\) coordinate will be calculated as a mean value of relative distance (vertical distance data).
*7) The display shows ">SET ?" when \{F3\} (SKP) key pressed in step 4. In this case, the new point data is not stored into the coordinate data file, only the value of occupied coordinate data changes to that of the calculated NEW POINT.
- Viewing PT\# LIST

You can see the PT\# List and enter the data from the List, also you can see coordinate data of a point. [Example: Executing Layout Mode]
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Operating procedure } & Operation & Display \\
\hline
\end{tabular}
- The operation of \(\{F 2\}(S R C H)\) is same as the "SEARCH" in the MEMORY MANAGER MODE.

馆 3 For more information, refer to Chapter 9 "MEMORY MANAGER MODE".

\section*{9 MEMORY MANAGER MODE}

The following items for internal memory are available in this mode.
1) FILE STATUS : Checking the number of stored data / Remaining internal memory capacity.
2) SEARCH : Searching the recorded data.
3) FILE MAINTAN. : Deleting files / Editing file name
4) COORD. INPUT : Inputting coordinate data into Coord. data file.
5) DELETE COORD. : Deleting coordinate data from Coord. data file.
6) PCODE INPUT : Inputting PCODE DATA into PCODE Library
7) DATA TRANSFER : Sending measured data or coordinate data or PCODE Library data / Uploading coordinate data or PCODE Library data / Setting communication parameters
8) INITIALIZE : Initializing internal memory.
- Memory manager menu operation

By pressing the \{MENU\} key, the instrument will be in MENU \(2 / 4\) mode.
Press the \(\{F 1\}\) (MEMORY MGR.) key, the menu of MEMORY MGR. \(1 / 3\) will be shown.


\subsection*{9.1 Display Internal Memory Status}

This mode is used to check the internal memory status.


\subsection*{9.2 Searching Data}

This mode is used to search the recorded file data in the DATA COLLECT or LAYOUT mode. The following 3 search methods in each type of files can be selected.

1: First data search
2: Last data search
3: Point number search (MEAS.DATA, COORD.DATA) Number search (PCODE LIB.)

MEAS. DATA : Measured data in the data collect mode. COORD. DATA : Coordinate data for layout, control points and new point data measured in the layout mode.
PCODE LIB. : The data which was registered with a number from 1 to 50 in Point code library.
Point name (PT\#, BS\#), ID, PCODE and Height data (INS.HT, R.HT) can be corrected in the searching mode.
Measured value can not be corrected.

\subsection*{9.2.1 Measured Data Searching}

Example: Point number searching
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F3\} (MEMORY MGR.) key from the menu 1/3. & \{F3\} & \begin{tabular}{|ll}
\hline MEMORY MGR. & \(1 / 3\) \\
F1: FILE STATUS & \\
F2:SEARCH & \\
F3: FILE MAINTAN P \(\downarrow\)
\end{tabular} \\
\hline 2 Press the \{F2\} (SEARCH) key. & \{F2\} & \[
\begin{aligned}
& \text { SEARCH } \\
& \text { F1: MEAS . DATA } \\
& \text { F2:COORD. DATA } \\
& \text { F3: PCODE LIB. }
\end{aligned}
\] \\
\hline 3 Press the \{F1\} (MEAS. DATA) key. & \{F1\} & ```
SELECT A FILE 
``` \\
\hline 4 Press the \(\{\) F1 \(\}\) (INPUT) key and enter File Name. Press the \{F4\} (ENT) key. *1),2) & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { Enter FN } \\
\{\mathrm{F} 4\}
\end{gathered}
\] & ```
MEAS. DATA SEARCH
 F1:FIRST DATA
 F2:LAST DATA
 F3:PT# DATA
``` \\
\hline 5 Press the \{F3\} (PT\# DATA) key. & \{F3\} & ```
PT# DATA SEARCH
    PT#=
```

\qquad

```
[ALP] [SPC] [CLR] [ENT]
``` \\
\hline \begin{tabular}{l}
6 Enter PT\#. \\
Press the \{F4\} (ENT) key. *1)
\end{tabular} & Enter PT\# \{F4\} & \\
\hline
\end{tabular}

7 Press the \｛F4\}(\(\downarrow\) ）key to scroll data for selected point．
```

PT\#」TOP-104
2/2
PCODE」
R.HT」 1.200 m
EDIT
\downarrow

```
＊1）隹 Refer to Section 2.6 ＂How to enter alphanumeric characters＂．
＊2）To show the file list，press the \｛F2\} (LIST) key.

\section*{Note}
－\(\quad \mathrm{\|}\)＂represents data shown on the display is the stored data．
－Press the \(\{\boldsymbol{\Delta}\}\) or \(\{\boldsymbol{\nabla}\}\) key to scroll to next or previous point．
－To search MEAS．DATA of the same point number，press \(\{\}\) or \(\{>\}\) key．

\section*{－To edit the data in searching mode}

Point name（PT\＃，BS\＃），ID，PCODE and Height data（INS．HT，R．HT）can be corrected in the searching mode．
Measured value can not be corrected．
\begin{tabular}{|c|c|c|c|}
\hline & Operating procedure & Operation & Display \\
\hline & & & \\
\hline & Press the \(\{\) F1\} (EDIT) key from last page of displayed data． & \｛F1\} & \begin{tabular}{|ll|}
\hline PT\＃ & \(\rightarrow\) TOP－104 \\
PCODE & \(:\) \\
R．HT & \(:\) \\
INPUT & 1.000 m \\
－ & \(--\quad\) ENTER
\end{tabular} \\
\hline 2 & Select the item to correct by pressing \(\{\mathbf{\Delta}\}\) or \(\{\boldsymbol{\nabla}\}\) key． & \｛ \(\boldsymbol{\Delta}\) \} or \(\{\boldsymbol{\nabla} \boldsymbol{\gamma}\) \} & \begin{tabular}{|ll|}
\hline PT\＃ & \(:\) TOP－104 \\
PCODE & \(:\) \\
R．HT & \(\rightarrow\) \\
INPUT & －－＿ \\
I．－－ & ENTER
\end{tabular} \\
\hline 3 & \begin{tabular}{l}
Press the \｛F1\} (INPUT) key and enter data. *1) Press the \｛F4\} (ENT) key. \\
Press the \｛F4\} (ENTER) key.
\end{tabular} & \begin{tabular}{l}
\｛F1\} \\
Enter Data \\
\｛F4\} \\
\｛F4\}
\end{tabular} & \[
\begin{aligned}
& \begin{array}{l}
\text { PT\# } \rightarrow \text { TOP-104 } \\
\text { PCODE : } \\
\text { R.HT }: \\
\text { >SAVE? }
\end{array} \quad 1.200 \mathrm{~m} \\
& \text { [YES] [NO] }
\end{aligned}
\] \\
\hline & Press the \(\{\mathrm{F} 3\}\)（YES）key． & \｛F3\} & \begin{tabular}{|lll}
\begin{tabular}{lll}
PT\＃ITOP－104 & \(2 / 2\) \\
PCODE」 \\
R． \(\mathrm{HT} 」\) \\
EDIT
\end{tabular} & 1.200 m \\
\hline
\end{tabular} \\
\hline
\end{tabular}
＊1）的 3 Refer to Section 2.4 ＂How to Enter Alphanumeric Characters＂．
Note
－When editing，ID and PCODE are not linked with PCODE LIBRARY．
－Even though the height data（INS．HT，R．HT）are corrected，the measured value can not be corrected．

\subsection*{9.2.2 Coordinate Data Searching}

Example searching: Point number searching

\subsection*{9.2.3 PCODE LIBRARY Searching}

Example searching: Number searching
\begin{tabular}{|c|c|c|c|}
\hline & Operating procedure & Operation & Display \\
\hline & Press the \{F3\} (MEMORY MGR.) key from the menu 1/3. & \{F3\} & \begin{tabular}{ll}
\hline MEMORY MGR. & \(1 / 3\) \\
F1: FILE STATUS & \\
F2:SEARCH & \\
F3:FILE MAINTAN & P \(\downarrow\)
\end{tabular} \\
\hline 2 & Press the \{F2\} (SEARCH) key. & \{F2\} & SEARCH
F1:MEAS. DATA
F2: COORD. DATA
F3: PCODE LIB. \\
\hline 3 & Press the \(\{\mathrm{F} 3\}\) (PCODE LIB.) key. & \{F3\} & ```
PCODE DATA SEARCH
 F1:FIRST DATA
 F2:LAST DATA
 F3:NO. SEARCH
``` \\
\hline 4 & Press the \(\{\) F3\} (No. SEARCH) key. & \{F3\} & \[
\begin{aligned}
& \text { PCODE NO. SEARCH } \\
& \text { NO. = } \\
& -----\quad[C L R] \text { [ENT] }
\end{aligned}
\] \\
\hline 5 & \begin{tabular}{l}
Enter number.Press the \(\{\) F4\} (ENT) key. *1) \\
The number and linked data will be shown. *2)
\end{tabular} & Enter PT\# \{F4\} & \(011:\) NAKADAI
\(\rightarrow 012\) : HILLTOP
013 : ITABASH
EDIT --- CLR --- \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
*1) 䦽 Refer to Section 2.4 "How to Enter Alphanumeric Characters". \\
- Press the \(\{\boldsymbol{\Lambda}\}\) or \(\{\nabla\}\) key to scroll to next or PCODE data. \\
*2) To correct the PCODE data, press the \{F1\} (EDIT) key. To delete the PCODE data, press the \(\{F 3\}\) (CLR) key.
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{9.3 File Maintenance}

In this mode, the following items are available.
Renaming file name / Searching data in a file / Deleting files
- FILE MAINTAN. menu


Pressing \{F3\} (FILE MAINTAN.) key from MEMORY MANAGER menu \(1 / 3\), file list will be shown.
- File discrimination mark (*,@,\&)

File discrimination mark (*,@,\&) placed before file name indicates the file status.
For measured data file
" * " selected file for DATA COLLECT mode.
For coordinate data file
" * " selected file for LAYOUT mode.
" @ " selected coordinate file for DATA COLLECT mode.
" \& " selected coordinate file for both LAYOUT and DATA COLLECT mode.
- Data discrimination character (M, C)

Data discrimination character ( \(M, C\) ) placed before four figures indicates the type of data.
" M " : Measured data
" C " : Coordinate data.
- Four figures means the total number of data in the file.
(Coordinate data file has an extra data for working.)
Press the \(\{\mathbf{\Delta}\) \} or \(\{\boldsymbol{\nabla}\}\) key to scroll to next file.

\subsection*{9.3.1 Rename a File}

An existing file in internal memory can be renamed.
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F3\} (FILE MAINTAN.) key from the Memory manager menu \(1 / 3\). & \{F3\} & \(\begin{array}{rrr}\rightarrow \text { MEASD1 } & \text { /M0123 } \\ \text { COORD1 } & \text { /C0056 } \\ \text { REN } & \text { SRCH } & \text { DEL }\end{array}\) \\
\hline 2 Select a file by pressing \(\{\boldsymbol{\Delta}\}\) or \(\{\boldsymbol{\nabla}\}\) key. & \{ \(\boldsymbol{\Delta}\) \} or \(\{\boldsymbol{\nabla}\}\) & \begin{tabular}{|rr|}
\hline MEASD1 & /M0123 \\
\(\rightarrow\) COORD1 & /C0056 \\
COORD2 & /C0098 \\
REN SRCH & DEL
\end{tabular} \\
\hline 3 Press the \{F1\} (REN) key. & \{F1\} & \begin{tabular}{|cc|}
\hline MEASD1 & /M0123 \\
=COORD1 & /C0056 \\
COORD1 & /C0098 \\
[ALP] [SPC] [CLR] [ENT]
\end{tabular} \\
\hline \begin{tabular}{l}
4 Enter new file name. \\
Press the \{F4\} (ENT) key. *1)
\end{tabular} & \[
\begin{aligned}
& \text { Enter FN } \\
& \{\mathrm{F} 4\}
\end{aligned}
\] & \begin{tabular}{|rr|}
\hline MEASD1 & /M0123 \\
\(\rightarrow\) COORD5 & \(/ \mathrm{COO56}\) \\
COORD1 & \(/ \mathrm{COO98}\) \\
REN SRCH & DEL
\end{tabular} \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
*1) 家 Refer to Section 2.4 "How to Enter Alphanumeric Characters". Existing file name can not be available. \\
To return to the FILE MAINTAN. Menu, press the \{ESC \(\}\) key.
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{9.3.2 Searching Data in a File}

An existing file in internal memory can be searched.
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F3\} (FILE MAINTAN.) key from the Memory manager menu \(1 / 3\). & \{F3\} & \(\begin{array}{rrr}\rightarrow \text { MEASD1 } & \text { /M0123 } \\ \text { COORD1 } & / \mathrm{COO56} \\ \text { REN } & \text { SRCH } & \text { DEL }\end{array}\) \\
\hline 2 Select a file to search by pressing \(\{\mathbf{A}\}\) or \(\{\nabla\}\) key. & \{ \(\mathbf{A}\) \} or \(\{\nabla\) \} & \begin{tabular}{|cr|}
\hline MEASD1 & /M0123 \\
\(\rightarrow\) COORD1 & /C0056 \\
COORD2 & \(/ \mathrm{COO98}\) \\
REN SRCH & DEL
\end{tabular} \\
\hline 3 Press the \{F2\} (SRCH) key. & \[
\{\mathrm{F} 2\}
\] & SEARCH [COORD1]
F1:FIRST DATA
F2:LAST DATA
F3:PT\# DATA \\
\hline 4 Select searching method by pressing the \(\{\mathbf{F} 1\}\) to \{F3\} key. *1) & \(\{\mathrm{F} 1\}\) to \(\{\mathrm{F} 3\}\) & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
*1) Because procedures from next are same as procedures of Section 9.2 "Searching Data", refer to Section 9.2 "Searching Data" \\
To return to the FILE MAINTAN. Menu, press the \{ESC\} key.
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{9.3.3 Deleting a File}

This mode erases a file from internal memory. Only one file can be erased at a time.
\begin{tabular}{|c|c|c|c|}
\hline Operating procedure & Operation & \multicolumn{2}{|c|}{Display} \\
\hline 1 Press the \{F3\} (FILE MAINTAN.) key from the Memory manager menu \(1 / 3\). & \{F3\} & \(\rightarrow\) MEASD1
COORD1
REN SRCH & /M0123
/C0056
DEL --- \\
\hline 2 Select a file to delete by pressing \(\{\mathbf{\Delta}\}\) or \(\{\boldsymbol{\nabla}\}\) key. & \{ \(\boldsymbol{A}\) \} or \(\{\boldsymbol{\nabla}\}\) & \[
\begin{gathered}
\text { MEASD1 } \\
\rightarrow \text { COORD1 } \\
\text { COORD2 } \\
\text { REN SRCH }
\end{gathered}
\] & \[
\begin{aligned}
& \text { /MO123 } \\
& \text { /COO56 } \\
& \text { /COO98 }
\end{aligned}
\]
DEL --- \\
\hline 3 Press the \(\{F 3\}\) (DEL) key. & \{F3\} & MEASD1
\(\rightarrow\) COORD1
COORD2
>DELETE? & \[
\begin{gathered}
\text { /MO123 } \\
\text { /COO56 } \\
\text { /COO98 } \\
\text { [NO] [YES] }
\end{gathered}
\] \\
\hline 4 Confirm the deleting, and press the \{F4\} (YES) key. & \{F4\} & MEASD1
\(\rightarrow\) COORD2
COORD3
REN SRCH & /M0123
/COO98
/CO321
DEL --- \\
\hline
\end{tabular}

\subsection*{9.4 Coordinate Data Direct Key Input}

\subsection*{9.4.1 Coordinate data input}

Coordinate data for the layout point or control point can be input directly from the keyboard. This data can be stored into a file in the internal memory.
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F3\} (MEMORY MGR.) key from the menu 1/3. & \{F3\} & \begin{tabular}{|lc|}
\hline MEMORY MGR. & \(1 / 3\) \\
F1: FILE STATUS & \\
F2:SEARCH & \\
F3: FILE MAINTAN & P \(\downarrow\) \\
\end{tabular} \\
\hline 2 Press the \(\{\mathrm{F} 4\}\) (P \(\downarrow\) ) key. & \{F4\} & \begin{tabular}{|ll|}
\hline MEMORY MGR. & \(2 / 3\) \\
F1: COORD. INPUT & \\
F2: DELETE COORD. & \\
F3: PCODE INPUT & P \(\downarrow\)
\end{tabular} \\
\hline 3 Press the \{F1\} (COORD. INPUT) key. & \{F1\} & ```
SELECT A FILE 
``` \\
\hline \begin{tabular}{l}
4 Press the \{F1\} (INPUT) key and enter File Name you want to input. \\
Press the \{F4\} (ENT) key. *1)
\end{tabular} & \[
\begin{gathered}
\{F 1\} \\
\text { Enter FN } \\
\{F 4\}
\end{gathered}
\] & \[
\begin{aligned}
& \text { COORD. DATA INPUT } \\
& \text { F1:NEZ } \\
& \text { F2: PTL }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
5 Select the kind of coordinates. \\
NEZ: Coordinate data \\
PTL: The coordinate data for point to line
\end{tabular} & \{F1\} & ```
COORD. DATA INPUT
 PT# :
```

$\qquad$

```
INPUT LIST --- ENTER
``` \\
\hline 6 Press the \(\{\mathrm{F} 1\}\) (INPUT) key and enter PT\#. Press the \{F4\} (ENT) key. *1) & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { Enter PT\# } \\
\{\mathrm{F} 4\}
\end{gathered}
\] &  \\
\hline \begin{tabular}{l}
7 Enter data. \\
Press the \{F4\} (ENT) key. *1)
\end{tabular} & Enter data \{F4\} & COORD. DATA INPUT
PCODE :
INPUT LIST _-_ ENTER \\
\hline \begin{tabular}{l}
8 Enter PCODE and press the \{F4\} (ENTER). \\
Next input display is shown, point number (PT\#) is automatically incremented.
\end{tabular} & \[
\begin{gathered}
\{F 1\} \\
\text { Enter PCODE } \\
\{F 4\}
\end{gathered}
\] & \begin{tabular}{l}
COORD. DATA INPUT \\
PT\# : TOPCON-102 \\
INPUT \(\qquad\)
\(\qquad\) ENTER
\end{tabular} \\
\hline \multicolumn{3}{|l|}{*1) 违 Refer to Section 2.4 "How to Enter Alphanumeric Characters".} \\
\hline
\end{tabular}

\subsection*{9.4.2 PTL (Point to Line) data input}

PTL Coordinate data for the layout point or control point can be input directly from the keyboard. This data can be stored into a file in the internal memory.
\begin{tabular}{|c|c|c|c|}
\hline & Operating procedure & Operation & Display \\
\hline & Press the \{F3\} (MEMORY MGR.) key from the menu 1/3. & \{F3\} & \begin{tabular}{ll}
\hline MEMORY MGR. & \(1 / 3\) \\
F1: FILE STATUS & \\
F2:SEARCH & \\
F3:FILE MAINTAN & P \(\downarrow\)
\end{tabular} \\
\hline 2 & Press the \(\{\mathrm{F} 4\}(\mathrm{P} \downarrow\) ) key. & \{F4\} & \begin{tabular}{|lr|}
\hline MEMORY MGR. & \(2 / 3\) \\
F1: COORD. INPUT & \\
F2:DELETE COORD. & \\
F3: PCODE INPUT & P \(\downarrow\)
\end{tabular} \\
\hline 3 & Press the \{F1\} (COORD. INPUT) key. & \{F1\} &  \\
\hline 4 & \begin{tabular}{l}
Press the \{F1\} (INPUT) key and enter File Name you want to input. \\
Press the \{F4\} (ENT) key. *1)
\end{tabular} & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { Enter FN } \\
\{\mathrm{F} 4\}
\end{gathered}
\] & \[
\begin{aligned}
& \text { COORD. DATA INPUT } \\
& \text { F1:NEZ } \\
& \text { F2: PTL }
\end{aligned}
\] \\
\hline 5 & \begin{tabular}{l}
Select the kind of coordinates. \\
NEZ: Coordinate data \\
PTL: The coordinate data for point to line
\end{tabular} & \{F2\} & ```
COORD. DATA INPUT
    PT# :
```

\qquad

```
INPUT LIST --- ENTER
``` \\
\hline 6 & Press the \{F1\} (INPUT) key and enter PT\#. Press the \{F4\} (ENT) key. *1) & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { Enter PT\# } \\
\{\mathrm{F} 4\}
\end{gathered}
\] & \(\begin{array}{llll}\mathrm{L}= & & \mathrm{m} \\ 0: & & \mathrm{m} \\ \mathrm{E}: & & & \mathrm{m} \\ --- & --- & \text { [CLR] } & \text { [ENT] }\end{array}\) \\
\hline 7 & \begin{tabular}{l}
Enter data. \\
Press the \{F4\} (ENT) key. *1) \\
L: Line \\
O: Offset \\
E: Elevation
\end{tabular} & Enter data \{F4\} & \\
\hline & \begin{tabular}{l}
Enter PCODE, FROM and TO data and press the \{F4\} (ENTER).*2) \\
Next input display is shown, point number (PT\#) is automatically incremented.
\end{tabular} & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { Enter PCODE } \\
\{\mathrm{F} 4\}
\end{gathered}
\] & COORD. DATA INPUT
PT\# : TOPCON-102
INPUT _-_ _-_ ENTER \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
*1) 㝿 Refer to Section 2.4 "How to Enter Alphanumeric Characters". \\
*2) When the inputted point name data as FROM or TO, does not exist in the same file, an error will be displayed.
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{9.5 Delete a Coordinate Data from a File}

Coordinate data in a file can be erased.
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F3\} (MEMORY MGR.) key from the menu 1/3. & \{F3\} & \begin{tabular}{ll}
\hline MEMORY MGR. & \(1 / 3\) \\
F1: FILE STATUS & \\
F2:SEARCH & \\
F3:FILE MAINTAN & P \(\downarrow\)
\end{tabular} \\
\hline 2 Press the \{F4\} (P \(\downarrow\)) key. & \{F4\} & \begin{tabular}{|ll|}
\hline MEMORY MGR. & \(2 / 3\) \\
F1: COORD. INPUT & \\
F2: DELETE COORD. & \\
F3: PCODE INPUT & P \(\downarrow\)
\end{tabular} \\
\hline 3 Press the \{F2\} (DELETE COORD.) key. & \{F2\} & \\
\hline 4 Press the \(\{\) F1\} (INPUT) key and enter File Name. Press the \{F4\} (ENT) key. *1) & \[
\begin{gathered}
\{F 1\} \\
\text { Enter FN } \\
\{F 4\}
\end{gathered}
\] & ```
DELETE COORD.
 PT# :
```

$\qquad$

```
INPUT LIST --- ENTER
``` \\
\hline 5 Press the \(\{\mathrm{F} 1\}\) (INPUT) key and enter PT\#. Press the \{F4\} (ENT) key. *1) & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { Enter PT\# } \\
\{\mathrm{F} 4\}
\end{gathered}
\] & \begin{tabular}{|cr}
\hline \(\mathrm{N}:\) & 100.234 m \\
\(\mathrm{E}:\) & 12.345 m \\
\(\mathrm{Z}:\) & 1.678 m \\
>DELETE? & [YES] [NO]
\end{tabular} \\
\hline \begin{tabular}{l}
6 Confirm the data and press the \{F3\} (YES) key. Deleting starts. \\
The display will return to the previous display.
\end{tabular} & \{F3\} & \\
\hline \multicolumn{3}{|l|}{*1) [飞} \\
\hline \multicolumn{3}{|l|}{- Even if an individual coordinate data is deleted, the internal memory usage does not change. Delete the file including coordinate data to decrease the memory usage.} \\
\hline
\end{tabular}

\subsection*{9.6 Editing PCODE Library}

PCODE data can be entered into PCODE Library in this mode.
A PCODE is linked with a number of 1 to 50
PCODE can be also edited in DATA COLLECT menu \(2 / 3\) in the same way.
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F3\} (MEMORY MGR.) key from the menu 1/3. & \{F3\} & \begin{tabular}{|lr}
\hline MEMORY MGR. & \(1 / 3\) \\
F1:FILE STATUS & \\
F2:SEARCH & \\
F3: FILE MAINTAN. P \(\downarrow\)
\end{tabular} \\
\hline 2 Press the \(\{\mathrm{F} 4\}(\mathrm{P} \downarrow)\) key. & \{F4\} & \begin{tabular}{ll}
\hline MEMORY MGR. & \(2 / 3\) \\
F1: COORD. INPUT & \\
F2: DELETE COORD. \\
F3: PCODE INPUT P \(\downarrow\)
\end{tabular} \\
\hline 3 Press the \{F3\} (PCODE INPUT) key. & \{F3\} & \[
\begin{aligned}
& \rightarrow 001: \text { TOPCON } \\
& 002: \text { TOKYO } \\
& \text { EDIT --- CLR --- }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
4 By pressing the following keys, the list will increase or decrease. \\
\{ \(\boldsymbol{\Delta}\) \} or \(\{\nabla\) \}: Increasing or Decreasing one by one. \(\{>\}\) or \(\{<\}\) : By ten Increasing or Decreasing.
\end{tabular} & \[
\begin{aligned}
& \{\Delta\} \text { or }\{\nabla\} \\
& \{\nabla\} \text { or }\{\}
\end{aligned}
\] & \[
\begin{gathered}
011: \text { URAH } \\
\rightarrow 012: \text { AMIDAT } \\
013: \text { HILLTO } \\
\text { EDIT --- CLR }
\end{gathered}
\] \\
\hline 5 Press the \{F1\} (EDIT) key. & \{F1\} & \[
\begin{gathered}
011: \text { URAH } \\
\rightarrow 012=\text { AMIDAT } \\
013: \text { HILLTO } \\
\text { [ALP] [SPC] [CLR] [ENT] }
\end{gathered}
\] \\
\hline 6 Enter PCODE and press the \{F4\} (ENT) key. *1) & Enter PCODE \{F4\} & 011 : URAH
\(\rightarrow 012\) : AMISUN
013 : HILLTO
EDIT --- CLR --- \\
\hline \multicolumn{3}{|l|}{*1) 违 Refer to Section 2.4 "How to Enter Alphanumeric Characters".} \\
\hline
\end{tabular}

\subsection*{9.7 Data Communications}

You can send a data file stored in the internal memory to a computer directly. Also, you can directly load a coordinate data file and PCODE Library data to the internal memory from the computer.

\subsection*{9.7.1 Sending Data}

Example: Sending a Measured data file
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F3\} (MEMORY MGR.) key from the menu 1/3. & \{F3\} & \begin{tabular}{|lr}
\hline MEMORY MGR. & \(1 / 3\) \\
F1: FILE STATUS & \\
F2:SEARCH & \\
F3:FILE MAINTAN & P \(\downarrow\)
\end{tabular} \\
\hline 2 Press the \{F4\} (P \(\downarrow\) ) key twice. & \[
\begin{aligned}
& \{F 4\} \\
& \{F 4\}
\end{aligned}
\] & MEMORY MGR. \(3 / 3\)
F1: DATA TRANSFER
F2:INITIALIZE \\
\hline 3 Press the \{F1\} (DATA TRANSFER) key. & \{F1\} & \[
\begin{aligned}
& \text { SELECT COM } \\
& \text { [F1:BLUETOOTH] } \\
& \text { F2:RS-232C } \\
& \text { F3:USB ENTER }
\end{aligned}
\] \\
\hline 4 Press the \{F2\} (RS-232C) key.*1) & \{F2\} & \\
\hline 5 Press the \{F4\} (ENTER) key. & \{F4\} & \begin{tabular}{l}
DATA TRANSFER \\
F1:GTS FORMAT \\
F2:SSS FORMAT
\end{tabular} \\
\hline \begin{tabular}{l}
6 Select data format. \\
GTS format: The conventional data SSS format: Including PCODE data, 'From' and 'To' data for Point to Line.
\end{tabular} & \{F1\} & DATA TRANSFER
F1:SEND DATA
F2: LOAD DATA
F3: COMM. PARAMETERS \\
\hline 7 Press the \{F1\} (SEND DATA) key. & \{F1\} & \begin{tabular}{|cc|}
\hline SEND DATA & \\
F1: MEAS. & DATA \\
F2:COORD. & DATA \\
F3: PCODE & DATA \\
\hline
\end{tabular} \\
\hline \begin{tabular}{l}
8 Select the type of data to send by pressing \{F1\}\{F3\} key. \\
Example: \(\{\mathrm{F} 1\}\) (MEAS. DATA)
\end{tabular} & \{F1\} & ```
SELECT A FILE 
``` \\
\hline 9 Press the \{F1\} (INPUT) key and enter File Name you want to send. Press the \{F4\} (ENT) key. *2),3),4) & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { Enter FN } \\
\{\mathrm{F} 4\}
\end{gathered}
\] & \begin{tabular}{l}
SEND MEAS. DATA \\
\(>\mathrm{OK}\) ? \\
--- --- [YES] [NO]
\end{tabular} \\
\hline
\end{tabular}

10 Press the \(\{\mathrm{F} 3\}\) (YES) key.*5)
The sending starts.
The display will return to menu.
SEND MEAS. DATA
< Sending Data!> STOP
*1) Only for Bluetooth function built-in model
*2) 【ア
*3) To scroll the data, press the \(\{\mathbf{\Delta}\}\) or \(\{\nabla\}\) key.
*4) To show the file list, press the \(\{\) F2 \(\}\) (LIST) key.
*5) To cancel the sending, press the \{F4\} (STOP) key.

\subsection*{9.7.2 Loading Data}

Coordinate data files and PCODE Library data can be loaded from PC.
Example: Loading a coordinate data file (from PC)
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F3\} (MEMORY MGR.) key from the menu 1/3. & \{F3\} & \begin{tabular}{ll}
MEMORY MGR. & \(1 / 3\) \\
F1: FILE STATUS & \\
F2:SEARCH & \\
F3:FILE MAINTAN & P \(\downarrow\)
\end{tabular} \\
\hline 2 Press the \(\{\mathrm{F} 4\}(\mathrm{P} \downarrow\)) key twice. & \[
\begin{aligned}
& \{F 4\} \\
& \{F 4\}
\end{aligned}
\] & MEMORY MGR. \(3 / 3\)
F1:DATA TRANSFER
F2: INITIALIZE \\
\hline & & \\
\hline 3 Press the \{F1\} (DATA TRANSFER) key. & \{F1\} & ```
SELECT COM
 [F1:BLUETOOTH]
 F2:RS-232C
 F3:USB
 ENTER
``` \\
\hline 4 Press the \{F2\} (RS-232C) key. & \{F2\} & \\
\hline 5 Press the \{F4\} (ENTER) key. & \{F4\} & \begin{tabular}{l}
DATA TRANSFER \\
F1:GTS FORMAT \\
F2:SSS FORMAT
\end{tabular} \\
\hline 6 Press the \{F1\} (GTS FORMAT) key. & \{F1\} & \begin{tabular}{l}
DATA TRANSFER \\
F1:SEND DATA \\
F2:LOAD DATA \\
F3:COMM. PARAMETERS
\end{tabular} \\
\hline 7 Press the \{F2\} (LOAD DATA) key. & \{F2\} & ```
LOAD DATA
    F1:COORD. DATA
    F2:PCODE DATA
``` \\
\hline \begin{tabular}{l}
8 Select the type of data to load by pressing \{F1\} or \(\{F 2\}\) key. \\
Example: \(\{\mathrm{F} 1\}\) (COORD. DATA)
\end{tabular} & \{F1\} & ```
COORD. FILE NAME
 FN=
```

$\qquad$

```
[ALP] [SPC] [CLR] [ENT]
``` \\
\hline 9 Enter New File Name you want to receive. Press the \{F4\} (ENT) key. *1) & \begin{tabular}{l}
Enter FN \\
\{F4\}
\end{tabular} & ```
LOAD COORD. DATA
    >OK ?
    --- --- [YES][NO]
``` \\
\hline \begin{tabular}{l}
10 Press the \(\{F 3\}\) (YES) key. \({ }^{*}\)) \\
The loading starts. \\
The display will return to menu.
\end{tabular} & \{F3\} & ```
LOAD COORD. DATA
 < Loading Data!>
 STOP
``` \\
\hline
\end{tabular}
*1) 【ア Refer to Section 2.4 "How to Enter Alphanumeric Characters".
*2) To cancel the loading, press the \{F4\} (STOP) key.

\subsection*{9.7.3 Setting Parameter of Data Communications}
- Items of the Parameter
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Item } & Selecting Item & \multicolumn{1}{c|}{ Contents } \\
\hline F1: Protocol & \begin{tabular}{c} 
[ACK/NAK], \\
[ONE WAY]
\end{tabular} & \begin{tabular}{l} 
Setting Protocol \\
[ACK/NAK] or [ONE WAY] communication
\end{tabular} \\
\hline F2: Baud rate & \begin{tabular}{c}
\(1200,2400,4800\), \\
\(9600,19200,38400\)
\end{tabular} & \begin{tabular}{l} 
Setting transfer speed \\
\(1200 / 2400 / 4800 / 9600 / 19200 / 38400\) baud
\end{tabular} \\
\hline F3: Char. / Parity & \begin{tabular}{c} 
[7/EVEN], [7/ODD], \\
[8/NON]
\end{tabular} & \begin{tabular}{l} 
Setting data length and parity. \\
[7bit, even], [7bit, odd], [8bit,none]
\end{tabular} \\
\hline F1: Stop Bits & 1,2 & Setting Stop 1 bit or 2bits \\
\hline
\end{tabular}
- Example Setting Baud rate: 19200 baud
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F3\} (MEMORY MGR.) key from the menu 1/3. & \{F3\} & \begin{tabular}{lc} 
MEMORY MGR. & \(1 / 3\) \\
F1: FILE STATUS & \\
F2:SEARCH & \\
F3: FILE MAINTAN & P \(\downarrow\)
\end{tabular} \\
\hline 2 Press the \(\{\mathrm{F} 4\}(\mathrm{P} \downarrow\) ) key twice. & \[
\begin{aligned}
& \{F 4\} \\
& \{F 4\}
\end{aligned}
\] & MEMORY MGR. \(3 / 3\)
F1: DATA TRANSFER
F2: INITIALIZE \\
\hline 3 Press the \{F1\} (DATA TRANSFER) key. & \{F1\} & ```
SELECT COM
    [F1:BLUETOOTH]
        F2:RS-232C
        F3:USB ENTER
``` \\
\hline 4 Press the \{F2\} (RS-232C) key. *1) & \{F2\} & \\
\hline 5 Press the \{F4\} (ENTER) key. & \{F4\} & \begin{tabular}{l}
DATA TRANSFER \\
F1:GTS FORMAT \\
F2:SSS FORMAT
\end{tabular} \\
\hline 6 Press the \{F1\} (GTS FORMAT) key. & \{F1\} & DATA TRANSFER
F1: SEND DATA
F2: LOAD DATA
F3: COMM. PARAMETERS \\
\hline 7 Press the \{F3\} (COMM. PARAMETERS) key. & \{F3\} & ```
COMM. PARAMETERS 1/2
 F1:PROTOCOL
 F2:BAUD RATE
 F3:CHAR./PARITY P}
``` \\
\hline 8 Press the \{F2\} (BAUD RATE) key. [ ] indicates present setting. & \{F2\} & \[
\begin{array}{|crc|}
\hline \text { BAUD RATE } & \\
\text { [1200] } & 2400 & 4800 \\
9600 & 19200 & 38400 \\
& & \text { ENTER }
\end{array}
\] \\
\hline 9 Select the items by pressing \(\{\Delta\}\) or \(\{\nabla\},\{<\}\) and \(\{>\}\) keys. *2) & \[
\begin{aligned}
& \{\nabla\} \\
& \{\nabla\}
\end{aligned}
\] & \begin{tabular}{|rrr}
\hline BAUD RATE \\
1200 & 2400 & 4800 \\
9600 & {\([19200] 38400\)} \\
& & ENTER
\end{tabular} \\
\hline
\end{tabular}

10 Press the \{F4\} (ENTER) key.
COMM. PARAMETERS 1/2 F1: PROTOCOL
F2: BAUD RATE
F3: CHAR./PARITY P \(\downarrow\)
*1) Only for Bluetooth function built-in model
\(\left.{ }^{*} 2\right)\) To cancel setting, press the \(\{E S C\}\) key.

\subsection*{9.7.4 Confirming the parameters for Bluetooth communication (Only for Bluetooth function built-in model)}

The communication parameters for the Bluetooth are fixed as follows. You can only confirm the parameters in Memory manager mode.
- Fixed parameters for Bluetooth communication
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } & \multicolumn{1}{c|}{ Fixed parameters } \\
\hline Baud rate & 38400 baud (Maximum effective speed) \\
\hline Char. / Parity & 8bit, none \\
\hline Stop Bits & Stop 1 bit \\
\hline
\end{tabular}

\subsection*{9.8 Initialization}

This mode is used to initialize the internal memory. Following data can be initialized.

FILE DATA : All files of measuring data and coordinate data
PCODE DATA : PCODE LIST
ALL DATA : FILE DATA and PCODE DATA
- The following data are not initialized even if initialization is executed.
: Coordinates of the instrument, Instrument height and Reflector height.
Example Initialization: ALL DATA (FILE data and PCODE data)
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F3\} (MEMORY MGR.) key from the menu 1/3. & \{F3\} & \begin{tabular}{ll}
\hline MEMORY MGR. & \(1 / 3\) \\
F1: FILE STATUS & \\
F2:SEARCH & \\
F3:FILE MAINTAN. P \(\downarrow\)
\end{tabular} \\
\hline 2 Press the \(\{F 4\}(P \downarrow)\) key twice. & \[
\begin{aligned}
& \{F 4\} \\
& \{F 4\}
\end{aligned}
\] & MEMORY MGR. \(3 / 3\)
F1:DATA TRANSFER
F2: INITIALIZE \\
\hline 3 Press the \{F2\} (INITIALIZE) key. & \{F2\} & INITIALIZE
F1:FILE AREA
F2: PCODE LIST
F3:ALL DATA \\
\hline \begin{tabular}{l}
4 Select the data to initialize by pressing one of the \(\{F 1\}\) to \(\{F 3\}\) key. \\
Example: \{F3\} (ALL DATA)
\end{tabular} & \{F3\} & \begin{tabular}{|rl|}
\hline INITIALIZE DATA \\
ERASE ALL DATA ! \\
& \\
\(>\) OK ? & [NO] [YES]
\end{tabular} \\
\hline \begin{tabular}{l}
5 Confirm the erase data, press the \{F4\} (YES) key. Initializing will start. \\
The display returns to menu.
\end{tabular} & \{F4\} & INITIALIZE DATA <Initializing!> \\
\hline & & MEMORY MGR. \(3 / 3\)
F1: DATA TRANSFER
F2: INITIALIZE \\
\hline
\end{tabular}

\section*{10 SET AUDIO MODE}

The light acceptance quantity level for the EDM (SIGNAL), the atmospheric correction value (PPM), and prism constant correction value of each target are displayed in this mode.
When reflected light from the prism is received a buzzer sounds. This function is good for easy collimation when the target is difficult to find.


\section*{11 SETTING THE PRISM CONSTANT VALUE}

The prism constant value of Topcon is set to zero. When using prisms other than Topcon's, it is necessary to set the prism constant correction value of that specific prism.
Once you set the correction value for prism constant, it is retained after power is OFF.
- Confirm the non-prism constant value is set at 0 when measuring target such as walls in Non-prism mode.
- Prism constant correction

Reflective prisms each have their prism constant.
Set the prism constant correction value of the reflective prism you are using. The prism constant correction value is a value that the prism constant is inverted to positive or negative. (E.g. if the prism constant is 40 mm , the correction value turns to -40 mm .)
\begin{tabular}{|c|c|c|c|}
\hline & Operating procedure & Operation & Display \\
\hline & Press the \{F4\} key to get the soft key page 2 in the distance measurement mode or page 3 in the coordinate measurement. & \{F4\} & \begin{tabular}{|ccc|}
\hline HR: \(120^{\circ} 30^{\prime} 40 "\) \\
HD* & 123.456 m \\
VD: & 5.678 m \\
MEAS MODE & NP/P & P1 \(\downarrow\) \\
\hline OFSET S.O & S/A & P2 \(\downarrow\) \\
\hline
\end{tabular} \\
\hline 2 & Press the \(\{\mathrm{F} 3\}\) (S/A). & \{F3\} & \begin{tabular}{lll}
\hline PSM:0.0 & PPM & 0.0 \\
NPM: 0.0 & SHT: & 0.0 \\
SIGNAL: [IIIII] & \\
PRISM & PPM & T-P
\end{tabular} \\
\hline 3 & Press the \(\{F 1\}\) (PRISM) key. & \{F1\} & \begin{tabular}{lll} 
PRISM \(=0.0\) & mm \\
N_PSM : 0.0 mm \\
SHEET : & 0.0 mm \\
\(---\quad[C L R][E N T]\)
\end{tabular} \\
\hline 4 & \begin{tabular}{l}
Input prism constant correction value. Press \{F4\} (ENT) to move to the next item. \\
PRISM: Prism Constant Correction Value N_PSM: Non-prism Constant Correction Value SHEET: Sheet Constant Correction Value
\end{tabular} & Enter value \{F4\} & PRISM : 14.0 mm
N_PSM \(=0.0 \quad \mathrm{~mm}\)
SHEET : 0.0 mm
\(---\quad\left[\begin{array}{l}\text { - }\end{array}\right]\) \\
\hline & When all the values are set, previous screen is restored. & & \begin{tabular}{lll} 
PSM: 14.0 & PPM & 0.0 \\
NPM:0.0 & SHT: & 0.0 \\
SIGNAL:[IIII] & \\
PRISM PPM & T-P & _--
\end{tabular} \\
\hline \multicolumn{4}{|l|}{*1) [ア Refer to Section 2.4 "How to Enter Alphanumeric Characters". Input range: -99.9 mm to \(99.9 \mathrm{~mm}, 0.1 \mathrm{~mm}\) step.} \\
\hline
\end{tabular}

\section*{12 SETTING ATMOSPHERIC CORRECTION}

The velocity of the light beam used for measurement varies according atmospheric conditions such as temperature and air pressure. Set the atmospheric correction factor when you wish to take this influence into account when measuring.
The GM is designed so that the correction factor is 0 ppm at an air pressure of 1013.25 hPa , a temperature of \(15^{\circ} \mathrm{C}\), and a humidity of \(50 \%\).
The values are kept in the memory even after power is OFF.

\subsection*{12.1 Calculation of Atmospheric Correction}

The velocity of the light beam used for measurement varies according atmospheric conditions such as temperature and air pressure. Set the atmospheric correction factor when you wish to take this influence into account when measuring.
- The instrument is designed so that the correction factor is 0 ppm at an air pressure of 1013.25 hPa , a temperature of \(15^{\circ} \mathrm{C}\), and a humidity of \(50 \%\).
- By inputting the temperature, air pressure values and humidity, the atmospheric correction value is calculated using the following formula and set into the memory.

Atmospheric Correction Factor (ppm) =
\[
282.324-\frac{0.294280 \times p}{1+0.003661 \times t}+\frac{0.04126 \times e}{1+0.003661 \times t}
\]
t : Air temperature \(\left({ }^{\circ} \mathrm{C}\right)\)
p : Pressure ( hPa )
e : Water vapor pressure ( hPa )
h : Relative humidity (\%)
E: Saturated water vapor pressure
- e (water vapor pressure) can be calculated using the following formula
\[
\begin{aligned}
& e=h \times \frac{E}{100} \\
& E=6.11 \times 10^{\frac{(7.5 \times t)}{(t+237.3)}}
\end{aligned}
\]
- The instrument measures the distance with a beam of light, but the velocity of this light varies according to the index of refraction of light in the atmosphere. This index of refraction varies according to the temperature and pressure. Near normal temperature and pressure conditions: With constant pressure, a temperature change of \(1^{\circ} \mathrm{C}\) : an index change of 1 ppm . With constant temperature, a pressure change of 3.6 hPa : an index change of 1 ppm . To perform high accuracy measurements, it is necessary to find the atmospheric correction factor from even more accurate temperature and pressure measurements and perform an atmospheric correction.
It is recommended that extremely precise instruments be used to monitor the air temperature and pressure.
- Enter the average temperature, air pressure and humidity along the measurement beam route in "Temperature", "Pressure" and "Humidity".
Flat terrain :Use the temperature, pressure and humidity at the midpoint of the line.
Mountainous terrain :Use the temperature, pressure and humidity at the intermediate point (C).
If it is not possible to measure the temperature, pressure and humidity at the midpoint, take such measurements at the instrument station (A) and the target station (B), then calculate the average value.

Average air temperature :(t1+t2)/2
Average air pressure :(p1 + p2)/2
Average humidity :(h1 + h2)/2

- If the weather correction is not required, set the ppm value to 0 .

\subsection*{12.2 Setting of Atmospheric Correction Value}

\section*{- How to set temperature, pressure and humidity value directly}

Measure the temperature, pressure and humidity surrounding the instrument beforehand.
- Factory setting for humidity input is "OFF". In this case, atmospheric correction factor is calculated assuming humidity is \(50 \%\). To input arbitrary value for humidity, set humidity input to "ON" in advance.
驺 see Section 6.4.8 "Humidity Input ON/OFF Setting".
```

TEMP. =15.0 *}\textrm{C
PRES. : 1013.3 hPa
HUMID.:(50.0) %
--- --- [CLR] [ENT]

```

Screen of humidity input OFF

Example: Temperature: \(26^{\circ} \mathrm{C}\), Pressure:1017hPa, Humidity: \(45 \%\)
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \{F4\} key to get the soft key page 2 in the distance measurement mode or page 3 in the coordinate measurement. & \{F4\} & \begin{tabular}{|crrl}
\hline HR: & \(120^{\circ} 30.40 "\) \\
HD* & 123.456 & m \\
VD: & 5.678 & m \\
MEAS & MODE & NP/P & P1 \(\downarrow\) \\
\hline OFSET & S.O & S/A & P2 \(\downarrow\) \\
\hline
\end{tabular} \\
\hline 2 Press the \{F3\} (S/A) key to set Set Audio Mode from distance or coordinate measurement mode. & \{F3\} & \begin{tabular}{|lcr|}
\hline PSM:0.0 & PPM & 0.0 \\
NPM:0.0 & SHT: & 0.0 \\
SIGNAL: [IIIII] & \\
PRISM & PPM & T-P \\
\hline
\end{tabular} \\
\hline 3 Press the \{F3\} (T-P) key. & \{F3\} & \begin{tabular}{|cccc|}
\hline TEMP . & \(=15.0\) & \({ }^{\circ} \mathrm{C}\) \\
PRES . : & 1013.3 & hPa \\
HUMID. & 50.0 & \(\%\) \\
--- & -- & [CLR] & [ENT]
\end{tabular} \\
\hline
\end{tabular}

4 Input temperature，pressure，and humidity values．＊1）
Mode returns to Set Audio mode．

Enter Temp． Enter Pres．

TEMP．： \(26.0{ }^{\circ} \mathrm{C}\) PRES．： 1017.0 hPa HUMID．： 45.0 \％ INPUT－－－－－－ENTER
＊1）『ア Refer to Section 2.4 ＂How to Enter Alphanumeric Characters＂．
－Range：Temp．-30.0 to \(60.0^{\circ} \mathrm{C}\left(0.1^{\circ} \mathrm{C}\right.\) step）or -22.0 to \(140.0^{\circ} \mathrm{F}\left(0.1^{\circ} \mathrm{F}\right.\) step）
Pres． 560.0 to 1066.0 hPa （ 0.1 hPa step）， 420.0 to \(800.0 \mathrm{mmHg}(0.1 \mathrm{mmHg}\) step）or 16.50 to \(31.50 \mathrm{inHg}(0.01 \mathrm{inHg}\) step）

Humid． 0.0 to \(100.0 \%\)（ \(0.1 \%\) step）
－How to Set the Atmospheric Correction Value Directly
Measure the temperature and air pressure to find atmospheric correction value（PPM）from the chart or correction formula．
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Press the \｛F4\} key to get the soft key page 2 in the distance measurement mode or page 3 in the coordinate measurement． & \｛F4\} & \begin{tabular}{llll}
\hline HR： \(120^{\circ} 30 ' 40 "\) & \\
HD＊ 123.456 m & \\
VD： 5.678 m & \\
MEAS MODE & NP／P & P1 \(\downarrow\) \\
\hline OFSET S．O & S／A & P2 \(\downarrow\)
\end{tabular} \\
\hline 2 Press the \｛F3\} (S/A) key to set Set Audio Mode from distance or coordinate measurement mode． & \｛F3\} & \begin{tabular}{lll}
\hline PSM：0．0 & PPM & 0.0 \\
NPM：0．0 & SHT： & 0.0 \\
SIGNAL：［IIIII］ & \\
PRISM & PPM & T－P
\end{tabular} \\
\hline 3 Press the \｛F2\} (PPM) key. Current setting value is displayed． & \[
\{\mathrm{F} 2\}
\] & \[
\begin{array}{|ccc|}
\hline \text { PPM SET } & & \\
\text { PPM }= & 0.0 & \mathrm{ppm} \\
----- & {[C L R]} & \text { [ENT] }
\end{array}
\] \\
\hline 4 Enter atmospheric correction value．＊1） Mode returns to Set Audio mode． & Enter Data \｛F4\} & \\
\hline \multicolumn{3}{|l|}{＊1）皔 Refer to Section 2.4 ＂How to Enter Alphanumeric Characters＂． Input range：－999．9 ppm to \(999.9 \mathrm{ppm}, 0.1 \mathrm{ppm}\) step} \\
\hline
\end{tabular}

\section*{13 CORRECTION FOR REFRACTION AND EARTH CURVATURE}

The instrument measures distance, taking into account correction for refraction and earth curvature.

\subsection*{13.1 Distance Calculation Formula}

Distance Calculation Formula; with correction for refraction and earth curvature taken into account. Follow the Formula below for converting horizontal and vertical distances.

Horizontal distance D = AC \((\alpha)\)
Vertical distance \(Z=B C(\alpha)\)
\(D=L\{\cos \alpha-(2 \theta-\gamma) \sin \alpha\}\)
\(Z=L\{\sin \alpha+(\theta-\gamma) \cos \alpha\}\)
\(\theta=\mathrm{L} \cdot \cos \alpha / 2 \mathrm{R}\) : Earth curvature correcting item
\(\gamma=\mathrm{K} \cdot \mathrm{L} \cos \alpha / 2 \mathrm{R}\) : Atmospheric refraction correcting item
\(\mathrm{K}=0.14\) or 0.20 : Coefficient of refraction
\(\mathrm{R}=6371 \mathrm{~km} \quad\) : Radius of earth
\(\alpha \quad:\) Altitude angle
L : Slope distance
- 收 Changing "K (Coefficient of refraction)" value : see Chapter 17 "SELECTING MODE".


\section*{14 POWER SOURCE AND CHARGING}

\subsection*{14.1 Battery Charging}

Be sure to charge the battery fully before using it for the first time or after not using it for long periods.
- The charger will become rather hot during use. This is normal.
- Do not use to charge batteries other than those specified.
- The charger is for indoor use only. Do not use outdoors.
- Batteries cannot be charged, even when the charging lamp is flashing, when the temperature is outside the charging temperature range.
- Do not charge the battery just after charging is completed. Battery performance may decline.
- Remove batteries from the charger before putting into storage.
- When not in use, disconnect the power cable plug from the wall outlet.
- Store the battery in a dry room where the temperature is within the following ranges. For long-term storage, the battery should be charged at least once every six months.
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Storage period } & \multicolumn{1}{c|}{ Temperature range } \\
\hline 1 week or less & -20 to \(50^{\circ} \mathrm{C}\) \\
\hline 1 week to 1 month & -20 to \(45^{\circ} \mathrm{C}\) \\
\hline 1 month to 6 months & -20 to \(40^{\circ} \mathrm{C}\) \\
\hline 6 months to 1 year & -20 to \(35^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
- Batteries generate power using a chemical reaction and as a result have a limited lifetime. Even when in storage and not used for long periods, battery capacity deteriorates with the passage of time. This may result in the operating time of the battery shortening despite having been charged correctly. In this event, a new battery is required.

\section*{- PROCEDURE}

1 Connect the power cable to the charger and plug the charger into the wall outlet.

2 Mount the battery in the charger by matching the grooves on the battery with the guides on the charger.
When charging starts, the lamp starts blinking.
3 Charging takes approximately 2.5 hours (BDC46C: \(25^{\circ} \mathrm{C}\) ).
The lamp lights when charging is finished.
4 Remove the battery and unplug the charger.


Slot 2


\section*{Note}
- Slots 1 and 2: The charger starts charging the battery mounted first. If you place two batteries in the charger, the battery in slot 1 is charged first, and then the battery in slot 2. (step 2)
- Charging lamp: The charging lamp is off when the charger is outside the charging temperature range or when the battery is mounted incorrectly. If the lamp is still off after the charger falls within its charging temperature range and the battery is mounted again, contact your local dealer. (steps 2 and 3)
- Charging time: BDC46C : about 2.5 hours (at \(25^{\circ} \mathrm{C}\) )

BDC70 (optional accessory) : about 5.5 hours (at \(25^{\circ} \mathrm{C}\) )
(Charging can take longer than the times stated above when temperatures are either especially high or low).

\subsection*{14.2 Installing/Removing the Battery}

Mount the charged battery.
馆 Type of power source: see Chapter 21 "BATTERY SYSTEM" .
- Use the provided battery BDC46C/BDC70 (optional accessory) for this instrument.
- When removing the battery, turn the power off.
- When installing/removing the battery, make sure that moisture or dust particles do not come in contact with the inside of the instrument.
- Waterproofing property for this instrument is not secured unless the battery cover and external interface hatch are closed, and the connector caps are correctly attached. Do not use it with these open or loose, under the condition where water or other liquid spills over the instrument. The specification grade for water proofing and dust resistance is not guaranteed when using USB connector.
- Remove batteries from the surveying instrument or charger before putting into storage.

\section*{- PROCEDURE}

1 Slide the catch on the battery cover to open.

2 Insert the battery with the arrow shown on it downward
while pressing toward the instrument.
- Inserting the battery aslant may damage the instrument or the battery terminal.

3 Close the cover. Listen for the click to ensure that the cover is properly closed.


P


\section*{15 USING USB FLASH DRIVE}

It is possible to read in/output data from/to a USB flash drive.
- When using a USB flash drive, data is stored in the root folder. You cannot read/write data from/to subfolders.
- When using the GM, an MS-DOS-compatible text file can be input/output.
- You can neither save a file under the same name as a read-only file, nor change/delete the name of a read-only file. (However, this varies depending on the model or software you are using.)
- For "Communication Manual" that describes details on the communication formats used for inputting/outputting data to/from a USB flash drive, please consult with your local dealer.
- When using the GM, you can use a USB flash drive with the capacity of up to 32GB.

\subsection*{15.1 Inserting the USB flash drive}
- Do not remove the USB flash drive during data read/write. Doing so will cause data stored in the USB flash drive or the GM to be lost.
- Do not remove the battery or turn OFF the power during data read/write. Doing so will cause data stored in the USB flash drive or the GM to be lost.
- Waterproofing property for this instrument is not secured unless the battery cover and external interface hatch are closed, and the connector caps are correctly attached. Do not use it with these open or loose, under the condition where water or other liquid spills over the instrument. The specification grade for water proofing and dust resistance is not guaranteed when using USB connector.

\section*{- PROCEDURE Inserting USB Flash Drive}

1 Open the external interface hatch.


2 Insert the USB flash drive in the USB port.

- When using a USB memory with 4 metal terminals on the surface, insert it with the terminal facing backwards to avoid damaging the USB port.

\section*{- PROCEDURE Removing USB Flash Drive}

1 Remove the USB flash drive from the USB port.

2 Close the external interface hatch until a click is heard.
- It is recommended that you remove the USB flash drive after you finish inputting/outputting data and then return to the MEMORY MGR. Menu or TOP FIELD Menu.
\begin{tabular}{|ll|}
\hline MEMORY MGR. & \(1 / 3\) \\
F1: FILE STATUS & \\
F2: SEARCH & \\
F3: FILE MAINTAN & P \(\downarrow\) \\
\hline
\end{tabular}

MEMORY MGR. Menu
\begin{tabular}{|ccc|}
\hline 1.JOB [ & ] \\
2.SETTING & \\
3.GO TO WORK & \\
[1] [2] [3] FIELD & \(\downarrow\) \\
\hline
\end{tabular}

If you remove the USB flash drive before returning to the above menus, the following display may be displayed when you insert it to your PC. Select "Scan and fix" to avoid this screen is displayed again.

- Removing the USB flash drive before returning to the above menus itself will never damage the measurement data in the memory.

\section*{16 DETACH/ATTACH OF TRIBRACH}

The instrument is easily detached or attached to the tribrach, with a tribrach locking lever loosened or tightened for this purpose.
- Detachment

1 Loosen the tribrach locking lever, by revolving it \(180^{\circ}\) or 200 gon in the counterclockwise direction (which will point the triangle mark upwards).
2 Grip the carrying handle firmly with one hand while holding the tribrach with the other. Then lift the instrument straight upwards and off.

\section*{- Attachment}

1 Hold the instrument by the carrying handle, with one hand, and carefully lower it on top of the tribrach while, at the same time, coinciding the alignment piece with the tribrach alignment groove on the instrument and tribrach respectively.
2 When fully seated, revolve the tribrach locking lever \(180^{\circ}\) or 200 gon clockwise (which will point the triangle mark downwards again).
3 Confirm that the upper instrument section is securely attached.


\section*{- Locking the Tribrach Locking Lever}

The tribrach locking lever can be locked, to prevent it be accidentally removed, especially if the upper instrument section is not being detached very often. Simply tighten the securing screw on the locking lever with the accessory precision screwdriver, found in the case.

\section*{17 SELECTING MODE}

\subsection*{17.1 Items of the Selecting Mode}

The following modes are available.
\begin{tabular}{|c|c|c|c|}
\hline Menu & Items & Selecting item & Display \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
\[
1:
\] \\
UNIT SET
\end{tabular}} & TEMP. \& PRES. & \begin{tabular}{l}
\({ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}\) \\
\(\mathrm{hPa} / \mathrm{mmHg} / \mathrm{inHg}\)
\end{tabular} & Select the unit of temperature for atmospheric correction. Select the unit of air pressure for atmospheric correction. \\
\hline & ANGLE & \begin{tabular}{l}
DEG ( \(360^{\circ}\) )/ \\
GON (400 G)/ \\
MIL ( 6400 M )
\end{tabular} & Choose degree, gon or mil unit for measuring angle. \\
\hline & DISTANCE & \(\mathrm{m} / \mathrm{ft} / \mathrm{ft}+\mathrm{in}\) & Choose measuring unit for distance meter, feet or feet and inch \\
\hline & FEET & US SURVEY/ INTERNATIONAL & \begin{tabular}{l}
Select the meter / feet conversion factor. US SURVEY feet \(1 \mathrm{~m}=3.280833333333333 \mathrm{ft}\). \\
INTERNATIONAL feet \\
\(1 \mathrm{~m}=3.280839895013123 \mathrm{ft}\).
\end{tabular} \\
\hline \multirow[t]{12}{*}{\begin{tabular}{l}
2: \\
MODE SET
\end{tabular}} & POWER ON MODE & ANGLE MEAS./ DISTANCE MEAS. & Select to set the measurement mode for angle or distance when the power is turned on. \\
\hline & FINE/CRS/ TRK & FINE/COARSE/ TRACK & Select Fine /Coarse / Tracking mode in distance measurement mode, when the power is turned on. \\
\hline & HD\&VD/SD & HD\&VD/SD & Specify which is displayed first, horizontal and vertical distance or slope distance, when the power is turned on. \\
\hline & \[
\begin{aligned}
& \hline \text { V ANGLE } \\
& \text { ZO/HO }
\end{aligned}
\] & \[
\begin{aligned}
& \text { ZENITH 0/ } \\
& \text { HORIZONTAL } 0
\end{aligned}
\] & Choose the vertical angle reading from zenith or from level. \\
\hline & N-TIMES / REPEAT & N-TIMES/REPEAT & Select the measurement mode for distance when the power is turned on. \\
\hline & TIMES OF MEAS. & 0 to 99 & Set \(N\) (number of times) for times of distance measurement. When setting number of times as 1or 0 , it is single measurement. \\
\hline & NEZ / ENZ & NEZ/ENZ & Select a coordinate displaying order either NEZ or ENZ. \\
\hline & HA MEMORY & ON/OFF & Horizontal angle set can be retained after the power is turned off. \\
\hline & \begin{tabular}{l}
ESC KEY \\
MODE
\end{tabular} & \begin{tabular}{l}
DATA COLLECT/ \\
LAYOUT/REC/OFF
\end{tabular} & You can select a function of the \{ESC\} key. DATA COLLECT/LAYOUT: It is possible to enter data input mode (in DATA COLLECT) or Layout Menu from normal measuring mode directly. REC: While executing normal or offset measuring, the measuring data can be output. OFF: Returns to normal function. \\
\hline & COORD. CHECK & ON/OFF & Select coordinate displaying ON or OFF when setting a point. \\
\hline & FINE READING & 0.1 mm/1 mm & Select 1 mm or 0.1 mm for the minimum reading unit in the distance mode (FINE mode). \\
\hline & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline & \[
\begin{aligned}
& \text { OFFSET V } \\
& \text { ANG }
\end{aligned}
\] & FREE/HOLD & \begin{tabular}{l}
Select Vertical angle setting in the Angle Offset measurement mode. \\
FREE: Vertical angle varies by the angle of the telescope. \\
HOLD: Vertical angle is fixed even if the angle of the telescope changes.
\end{tabular} \\
\hline & NON-PSM / PRISM & NON-PRISM/PRISM /SHEET & Select the distance measurement mode when the power is turned ON. \\
\hline \multirow[t]{13}{*}{\begin{tabular}{l}
3: \\
OTHERS \\
SET
\end{tabular}} & \begin{tabular}{l}
H-ANGLE \\
BUZZER
\end{tabular} & ON/OFF & Specify whether the buzzer sounds or not for every horizontal angle \(90^{\circ}\). \\
\hline & S/A BUZZER & ON/OFF & Specify whether the buzzer sounds or not in the set audio mode. \\
\hline & WCORRECTION & OFF/0.14/0.20 & Set correction for refraction and earth curvature, coefficient of refraction as; \(\mathrm{K}=0.14, \mathrm{~K}=0.20\) or no correction. \\
\hline & NEZ MEMORY & ON/OFF & It is possible to retain the coordinate of instrument point, the instrument height and prism height after power off. \\
\hline & REC TYPE & REC-A/REC-B & \begin{tabular}{l}
Select REC-A or REC-B for data output. \\
REC-A : The measurement is made again and this new data is output. \\
REC-B : The data being displayed is output.
\end{tabular} \\
\hline & CR,LF & ON/OFF & It is possible to output the data with carriage return and line feed. \\
\hline & \[
\begin{aligned}
& \text { NEZ REC } \\
& \text { FORM }
\end{aligned}
\] & STANDARD/ with RAW/ STANDARD -12Dig/ with RAW - 12Dig & Select to record coordinates in standard or with raw data. \\
\hline & MANUAL NEZ REC & ON/OFF & In the layout mode or data collect mode, it is possible to record coordinates entered directly from the keyboard. \\
\hline & ACK MODE & STANDARD/ OMITTED & \begin{tabular}{l}
Set the procedure of the communication with external device. \\
STANDARD:Normal procedure \\
OMITTED: Even though the [ACK] is omitted from the external device, the data is not sent again.
\end{tabular} \\
\hline & GRID FACTOR & USE G.F./ DON'T USE & Select using GRID FACTOR in calculation of measurement data. \\
\hline & CUT \& FILL & STANDARD/ CUT\&FILL & In the layout mode, CUT \& FILL can be displayed instead of dZ. \\
\hline & CONTRAST MENU & ON/OFF & When the instrument is turned ON, it is possible to display the screen which you can adjust contrast of the display and confirm the prism constant (PSM), non-prism constant (NPM), sheet constant (SHT) and atmospheric correction value (PPM). \\
\hline & PASSWORD *1 & ON/OFF & When the instrument is turned ON, the screen to request the password will appear. *2 \\
\hline
\end{tabular}

\footnotetext{
*1 Applicable only to the instruments with security function
*2 If you forget a password, the instrument needs repair to cancel the password. Please contact Topcon or your local Topcon dealer.
}

\subsection*{17.2 How to Set Selecting Mode}
<Example>: Setting unit in hPa, \({ }^{\circ} \mathrm{F}\), NEZ MEMORY:ON
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 After pressing the \{MENU\} key, press the \{F4\} \((P \downarrow)\) key twice to get the menu on page 3 . & \[
\begin{gathered}
\{\text { MENU }\} \\
\{F 4\} \\
\{F 4\}
\end{gathered}
\] & \begin{tabular}{ll} 
MENU & \(3 / 4\) \\
F1: ILLUMINATION \\
F2: PARAMETERS & \\
F3: PARAMETERS 2 & P \(\downarrow\)
\end{tabular} \\
\hline 2 Press the \{F3\} key. & \{F3\} & \begin{tabular}{l}
PARAMETERS 2 \\
F1:UNIT SET \\
F2: MODE SET \\
F3:OTHERS SET
\end{tabular} \\
\hline 3 Press \{F1\} (UNIT SET) key. & \{F1\} & \begin{tabular}{lr}
\hline UNIT SET & \(1 / 2\) \\
F1: TEMP. \& PRES. \\
F2: ANGLE & \\
F3: DISTANCE & \(P \downarrow\)
\end{tabular} \\
\hline 4 Press \{F1\} (TEMP. \& PRES.) key. & \{F1\} & \begin{tabular}{|lccl|}
\hline TEMP. \& PRES. UNIT \\
TEMP. & \(:\) & \({ }^{\circ} \mathrm{C}\) & \\
PRES. & : & mmHg & \\
\({ }^{\circ} \mathrm{C}\) & \({ }^{\circ} \mathrm{F}\) & --- & ENTER
\end{tabular} \\
\hline 5 Press \{F2\} \(\left({ }^{\circ} \mathrm{F}\right)\) key, and press \{F4\} (ENTER) key. & \[
\begin{aligned}
& \{F 2\} \\
& \{\mathrm{F} 4\}
\end{aligned}
\] & TEMP . \& PRES. UNIT
TEMP. : \({ }^{\circ} \mathrm{F}\)
PRES. \(: ~ m m H g\)
hPa mmHg inHg ENTER \\
\hline \begin{tabular}{l}
6 Press \{F1\} (hPa) key, and press \{F4\} (ENTER) key. \\
Returns to unit set menu.
\end{tabular} & \[
\begin{aligned}
& \{F 1\} \\
& \{F 4\}
\end{aligned}
\] & UNIT SET
F1: TEMP. \& PRES.
F2: ANGLE
F3: DISTANCE \\
\hline \begin{tabular}{l}
7 Press \{ESC \(\}\) key. \\
Returns to PARAMETERS 2 menu.
\end{tabular} & \{ESC\} & \begin{tabular}{l}
PARAMETERS 2 \\
F1:UNIT SET \\
F2:MODE SET \\
F3:OTHERS SET
\end{tabular} \\
\hline 8 Press \{F3\} (OTHERS SET) key. & \{F3\} & OTHERS SET
F1: H-ANGLE BUZZER
F2:S/A BUZZER
F3:W-CORRECTION P \(\downarrow\) \\
\hline 9 Press \(\{\mathrm{F} 4\}(\mathrm{P} \downarrow)\) key, to get the function in page 2. & \{F4\} & \begin{tabular}{lr}
\hline OTHERS SET & \(2 / 5\) \\
F1: NEZ MEMORY & \\
F2: REC TYPE & \\
F3: CR, LF & P \(\downarrow\)
\end{tabular} \\
\hline
\end{tabular}

10 Press \(\{F 1\}\) key.

11 Press \(\{F 1\}\) (ON) key, and press \(\{F 4\}\) (ENTER) key.
Returns to OTHERS SET menu.
\begin{tabular}{|c|c|}
\hline \{F1\} & NEZ MEMORY [OFF]
[ON] [OFF] --- ENTER \\
\hline \[
\begin{aligned}
& \{\mathrm{F} 1\} \\
& \{\mathrm{F} 4\}
\end{aligned}
\] & \begin{tabular}{|lr|}
\hline OTHERS SET & \(2 / 5\) \\
F1:NEZ MEMORY & \\
F2: REC TYPE & \\
F3:CR, LF & P \(\downarrow\) \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\section*{18 CHECKS AND ADJUSTMENTS}

A GM is a precision instrument that requires fine adjustments. It must be inspected and adjusted before use so that it always performs accurate measurements.
- Always perform checking and adjustment in the proper sequence beginning from Section 18.1 "Circular Level" to 18.7 "Checking and Adjusting of Laser Plummet*1".
- In addition, the instrument should be inspected with special care after it has been stored a long time, transported, or when it may have been damaged by a strong shock.
- Make sure the instrument is securely set up and stable before performing checks and adjustments.

\subsection*{18.1 Circular Level}
- Be careful that the tightening tension is identical for all the adjusting screws. Also, do not overtighten the adjusting screws as this may damage the circular level.
- PROCEDURE: Checking and adjusting

1 Level while checking the display.
[3 see Section 2.5.2 "Levelling".
- If the tilt sensor is misaligned, the circular level is not
 adjusted correctly.

2 Check the position of the bubble of the circular level. If the bubble is not off-center, no adjustment is necessary. If the bubble is off-center, perform the following adjustment.

3 First confirm the off-center direction.
Use the hexagonal wrench ( 2.5 mm ) to loosen the circular level adjustment screw on the side opposite to the direction the bubble is displaced to move the bubble to the center.

Circular level adjusting screws


4 Adjust the adjusting screws until the tightening tension of the three screws is the same to align the bubble in the middle of the circle.

\subsection*{18.2 Adjustment of Vertical Angle 0 Datum}

If when measuring the vertical angle of target A at telescope position normal (direct) and reverse settings, the amount of normal and reverse measurements combined is other than \(360^{\circ}\) (ZENITH-0), half of the difference from \(360^{\circ}\) is the error amount from corrected 0 setting. Carry out adjustment. As adjustment for vertical angle 0 setting is the criteria for determining instrument coordinate origin, use special care for adjustment.


\subsection*{18.3 Adjustment of Compensation Systematic Error of Instrument}

1 Vertical axis error
2 Collimation axis error
3 Vertical angle 0 datum error
Correction constants for the above errors are calculated and stored in the instrument by the following procedure, and then measurement values are corrected using the stored constants. This adjustment has a direct effect on determining the coordinate origin. Carry out the adjustment very carefully.
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Carefully level the instrument checking the screen. Turn OFF the power. & & \\
\hline 2 Power ON the instrument. & Power ON & \\
\hline 3 After pressing the \(\{\) MENU\} key, press the \(\{F 4\}\) \((\mathrm{P} \downarrow)\) key three times to get the menu on page 4 & \[
\begin{gathered}
\{\text { MENU }\} \\
\{F 4\} \\
\{F 4\} \\
\{F 4\}
\end{gathered}
\] & \begin{tabular}{lr} 
MENU & \(4 / 4\) \\
F1: ADJUSTMENT MODE \\
F2: CONTRAST ADJ. \\
F3: STATUS SCREEN P \(\downarrow\)
\end{tabular} \\
\hline 4 Press the \(\{\mathrm{F} 1\}\) key. & \{F1\} & ```
ADJUSTMENT MODE
    F1:V ANGLE O POINT
    F2:VO AXIS
``` \\
\hline & & \(\mathrm{P} \downarrow\) \\
\hline 5 Press the \{F2\} key. & \{F2\} & V0 AXIS
F1:MEASUREMENT
F2: CONSTANT LIST \\
\hline 6 Press the \(\{\mathrm{F} 1\}\) key. & \{F1\} & VO/AXIS ADJUSTMENTS \\
\hline & & (A) COLLIMATION \\
\hline 7 Collimate target A. (FACE (1)) & & \\
\hline 7 Colimate target A. (FACE (1)) & \begin{tabular}{l}
Collimate \\
A \\
(Normal)
\end{tabular} & \[
\begin{array}{ccc}
\text { FRONT FACE1 } & / 0 \\
\text { V: 8955'50" } & \\
\text { LEVEL } \pm 0 & \text { SET }
\end{array}
\] \\
\hline \begin{tabular}{l}
8 Press the \{F4\} (SET) key. *1) \\
The sample display shows that the measurement is made 5 times in FACE 1.
\end{tabular} & \{F4\} & \\
\hline 9 Turn the telescope in reverse telescope setting (FACE (2)). & Turn telescope & REVERSE FACE2
V: \(270^{\circ} 04^{\prime} 20^{\prime \prime}\)
LEVEL +0 \\
\hline 10 Collimate target \(A\). & \begin{tabular}{l}
Collimate \\
A \\
(Reverse)
\end{tabular} & SET
\(\downarrow\) \\
\hline
\end{tabular}

11 Press the \{F4\} (SET) key.
Repeat the procedures in step 8 and 9 so that the count of measured times matches to the one in FACE (1). *2)
- To show the constant list of systematic error of instrument

1 Press the \{F2\} key from Adjustment Mode menu.

2 Press the \{F2\} key.
Correction values are displayed.

3 Press the \(\{\mathrm{F} 1\}\) key.
The display returns to previous menu.
\{F4\}
COMPLETE

\section*{ADJUSTMENT MODE \\ F1:V ANGLE 0 POINT F2:VO AXIS}
\{F2\}
VO AXIS
F1: MEASUREMENT
F2:CONSTANT LIST
\{F2\}
VCo: \(1^{\circ} 57^{\prime \prime} 12\)
HCO: \(-0^{\circ} 0^{\prime} 20^{\prime \prime}\)
HAx: \(-0^{\circ} 00^{\prime 2} 0^{\prime \prime}\)
EXIT
*1) It is able to get the average value from 1 to 10 measurements. To get the average, repeat the procedures in steps \(\mathbf{5 , 6}\) or \(\mathbf{8}, \mathbf{9}\). The measured times is counted in the second line of display.
*2) The compensation values of 1) Error of vertical axis (\(X, Y\) tilt sensor offset), 2) Collimation error, and 3) Error of vertical angle 0datum will be set and memorized internally.

\subsection*{18.4 Reticle}

With this option you can check the perpendicularity of the reticle and the horizontal/vertical positions of reticle lines.
- Check 1: Perpendicularity of the reticle to the horizontal axis
1) Carefully level the instrument.
2) Align a clearly visible target (the edge of a roof for example) on point \(A\) of the reticle line.

3) Use the telescope fine motion screw to align the target to point B on a vertical line.
If the target moves parallel to the vertical line, adjustment is unnecessary. If its movement deviates from the vertical line, have our service representative adjust it.

- Check 2: Vertical and horizontal reticle line positions
- Perform check in weak sunlight and no scintillation.
- "TILT" should be set to "XY-ON" and "ERROR CORRECTION" to "ON" in <PARAMETERS 1> while performing checks.
[予 see Section 6.4 "Setting Mode 1".
1) Carefully level the instrument.
2) Install a target at a point about 100 m in the horizontal direction from the instrument.

3) While the observation screen is displayed and the telescope is in Face 1, sight the center of the target correctly and read out the horizontal angle A1 and the vertical angle B1.

Example:
Horizontal angle A1 \(=18^{\circ} 34^{\prime} 00^{\prime \prime}\)
Vertical angle B1 \(=90^{\circ} 30^{\prime} 20^{\prime \prime}\)
4) While the telescope is in Face 2, sight the center of the target correctly and read out the horizontal angle A2 and the vertical angle B2.

Example:
Horizontal angle A2 \(=198^{\circ} 34^{\prime} 20^{\prime \prime}\)
Vertical angle B2 \(=269^{\circ} 30^{\prime} 00^{\prime \prime}\)
5) Do the calculations:
\(\mathrm{A} 2-\mathrm{A} 1\) and \(\mathrm{B} 2+\mathrm{B} 1\)
If A2-A1 is within \(180^{\circ} \pm 20^{\prime \prime}\) and B 2 (B1 is within \(360^{\circ} \pm 40^{\prime \prime}\),
adjustment is unnecessary.

\section*{Example:}

A2-A1 (Horizontal angle) \(=198^{\circ} 34^{\prime} 20^{\prime \prime}-18^{\circ} 34^{\prime} 00^{\prime \prime}\)
\[
\text { =18000' } 00^{\prime \prime}
\]

B2-B1 (Vertical angle) \(=269^{\circ} 30^{\prime} 00^{\prime \prime}+90^{\circ} 30^{\prime} 20^{\prime \prime}\)
\[
\text { =36000' } 20 \text { " }
\]

If the difference is large even after repeating the check 2 or 3 times, make sure that checking and adjusting of Section 18.2 "Adjustment of Vertical Angle 0 Datum" and 18.3 "Adjustment of Compensation Systematic Error of Instrument" are completed.
If the results remain the same, have our service representative perform the adjustment.

\subsection*{18.5 Optical Plummet}

\section*{1}
- Be careful that the tightening tension is identical for all the adjusting screws. Also, do not overtighten the adjusting screws as this may damage the circular level.

\section*{- Checking}
1) Carefully level the instrument and center a survey point precisely in the reticle of the optical plummet.
2) Turn the upper part through \(180^{\circ}\) and check the position of the survey point in the reticle.
If the surveying point is still centered, no adjustment is necessary.
If the survey point is no longer centered in the optical plummet, perform the following adjustment.

\section*{- Adjusting}
3) Correct half the deviation with the levelling foot screw.

4) Remove the optical plummet reticle cover.

Adjusting screw

5) Turn the 4 adjusting screws of the optical plummet to adjust the remaining half of the deviation using hexagonal wrench (1.3 mm) as shown below.
When the survey point is on the lower (upper) part of the illustration:
Loosen the upper (lower) adjusting screw slightly, and tighten the upper (lower) adjusting screw the same amount to move the survey point to a point directly under the center of the optical plummet.
(It will move to the line in the figure on the right.)
If the survey point is on the solid line (dotted line): Loosen the right (left) adjusting screw slightly and, tighten the left (right) adjusting screw by the same amount to move the survey point to a point in the center of the optical plummet.

6) Check to make sure that the survey point remains centered on the reticle even if the upper part of the instrument is rotated.
If necessary, perform the adjustment again.
7) Replace the optical plummet reticle cover by matching the grooves on the cover with the grooves on the optical plummet.

\subsection*{18.6 Additive Distance Constant}

The additive distance constant K of the GM is adjusted to 0 before delivery. Although it almost never deviates, use a baseline with a known distance precision to check that the additive distance constant K is close to 0 several times a year and whenever the values measured by the instrument begin to deviate by a consistent amount. Perform these checks as follows.
- Errors in setting up the instrument and reflective prism or in sighting the target will influence the additive distance constant. Be extremely careful to prevent such errors when performing these procedures.
- Set up so that the instrument height and the target height are identical. If a flat place is not available, use an automatic level to make sure the heights are identical.

\section*{- Checking}
1) Find an area of flat ground where two points 100 m apart can be selected.
Set up the Instrument at point A and the reflective prism at point \(B\). Establish a point \(C\) half way between points \(A\) and B.

2) Precisely measure the horizontal distance between point \(A\) and point B 10 times and calculate the average value.
3) Place the GM at point \(C\) directly between points \(A\) and \(B\) and set up the reflective prism at point \(A\).
4) Precisely measure the horizontal distances \(C A\) and \(C B 10\) times each and calculate the average value for each distance.
5) Calculate the additive distance constant \(K\) as follows.
\(K=A B-(C A+C B)\)
6) Repeat steps 1 to 5 two or three times.

If the additive distance constant K is within \(\pm 3 \mathrm{~mm}\) even once, adjustment is unnecessary. If it always exceeds this range, have our service representative perform an adjustment.

\subsection*{18.7 Checking and Adjusting of Laser Plummet \({ }^{* 1}\)}

Checks and adjustments are performed using an adjustment target. Make an enlarged or reduced copy of the figure below.
*1: Laser plummet is available as a factory option depending on the country or the area where the instrument is purchased.

\section*{- Checking}
1) Set the tripod so that the height from the ground to the tripod head is approximately 1.3 m , level the instrument, and emit the laser plummet beam.
\(\mathbb{\square}\) see Section 2.5.2 "Levelling".
2) Rotate the upper part horizontally and place a target so that it is aligned with the center of the circle created by the rotating laser plummet beam.
- Laser beam remains centered on the center of the target - No adjustment necessary
- Laser beam strays from the center of the target Adjustment necessary.
- Laser beam draws a circle outside the target circle Contact your local dealer.

\section*{- Adjusting}
1) Turn the laser plummet adjustment cap anticlockwise and remove.

2) Emit the laser plummet beam.
3) Note the current position (x) of the laser beam.
4) Turn the upper part of the instrument horizontally through \(180^{\circ}\) and note the new position (\(y\)) of the laser beam. Adjustment will bring the laser beam to a point midway along a line drawn between these two positions.
5) Check the position of the desired final position. Place a target so that its center is aligned with the desired final position.
The remaining deviation will be adjusted using the 4 fine adjustment screws.
- Be extremely careful to adjust all the fine adjustment screws by the same amount so that none will be over-tightened.
- Turn screws clockwise to tighten.

6) When the laser beam is on the upper (lower) part of Fig. A the up/down adjustment is made as follows:
a. Insert the provided hexagon key wrench into both the upper and lower screws.
b. Slightly loosen the upper (lower) screw and tighten the lower (upper) screw. Make sure that the tightening tension for both screws is identical. Continue to adjust until the laser beam is on the horizontal line of the target.
7) When the laser beam is in the right (left) part of Fig. B the left (right) adjustment is made as follows:
a. Insert a hexagon key wrench into both the left and right screws.
b. Slightly loosen the right (left) screw and tighten the left (right) screw. Make sure that the tightening tension for both screws is identical.
Continue to adjust until the laser beam is aligned with the target center.

8) Turn the upper part of the instrument horizontally and check that the laser beam is now aligned with the target center.
9) Re-attach the laser plummet adjustment cap.

\section*{Note}
- Tightening each of the fine adjustment screws moves the laser plummet beam in the directions shown below.

Fine adjustment screws

\section*{19 TOP FIELD MODE}

\subsection*{19.1 MAIN MENU (Major Functions)}

\subsection*{19.2 JOB}
- When a job is created, a measurement/coordinates data file with the same job name will be created in the internal memory. If there is another file with the same name, the existing data file will be used for the job.

\subsection*{19.2.1 To Create New Job}
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Select \{F1\} (TOP FIELD) from the menu. & \begin{tabular}{l}
\{MENU\} \\
\{F1\}
\end{tabular} & 1.JOB [
2.SETTING
3.GO TO WORK
[1] [2] [3] \\
\hline 2 Select \{F1\} (JOB). & \{F1\} & \begin{tabular}{l}
1.OPEN JOB FILE \\
2.CREATE NEW JOB \\
3.NO JOB FILE \\
[1] [2] [3]
\end{tabular} \\
\hline 3 Select \{F2\} (CREATE NEW JOB). & \{F2\} & \begin{tabular}{cccc}
\hline ENTER & JOB & FILE & \\
& {\([\)} & & \\
& & & \\
& & ALP & CLR
\end{tabular} \\
\hline \begin{tabular}{l}
4 Enter job name. \\
10 letters maximum
\end{tabular} & Enter job name & \begin{tabular}{|ccc|}
\hline ENTER \(\left.\begin{array}{ccc}\text { JOB FILE } \\
\text { [JOB1_ } & & \\
& & \\
& & \text { ALP } \\
& & \text { CLR }\end{array}\right]\) \\
& &
\end{tabular} \\
\hline \begin{tabular}{l}
5 Press \{ENT\} key to create a new job. \\
- If there is another job with the same name, the existing job will be selected. \\
- A maximum of 49 job files can be registered.
\end{tabular} & \{ENT\} & \begin{tabular}{|lll|}
\hline 1.JOB [JOB1 & \\
2.SETTING & \\
3.GO TO WORK & \\
[1] [2] [3] & \(\downarrow\)
\end{tabular} \\
\hline
\end{tabular}
19.2.2To Select Existing Job

\subsection*{19.2.3To Delete Job}
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Select \(\{\) F1\} (TOP FIELD) from the menu. & \begin{tabular}{l}
\{MENU\} \\
\{F1\}
\end{tabular} & \begin{tabular}{l}
1.JOB [\\
2.SETTING \\
3.GO TO WORK \\
[1] [2] [3] \\
\hline
\end{tabular} \\
\hline \begin{tabular}{l}
2 Select \{F1\} (JOB). \\
3 Select \{F4\}(\(\downarrow\)) to move to the second page of the JOB menu.
\end{tabular} & \{F1\}, \{F4\} & 4.DELETE JOB FILE
[4] \\
\hline 4 Select \{F1\} (DELETE JOB FILE). & \{F1\} & \begin{tabular}{|ccccc}
\hline SELECT & JOB & TO & DEL & \\
& {\(\left[\begin{array}{llll}- & & &] \\
& \downarrow & & \\
& & \text { ALP } & \text { CLR }\end{array}\right]\)}
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 5 Select an existing job name with \{F1\} or \{F2\} (Arrow) key, or enter a job name. & Enter/ Select job name & \begin{tabular}{lllll}
SELECT & JOB TO & DEL & \\
& [JOB1_ & & \\
& & & & \\
\(\uparrow\) & \(\downarrow\) & ALP & CLR
\end{tabular} \\
\hline 6 Press \{ENT\} key. & \{ENT\} & \begin{tabular}{|cccc}
\hline SELECT & JOB TO DEL \\
& [JOB1_ & \\
& [YES] [NO]
\end{tabular} \\
\hline 7 Pressing \{F3\} (YES) key will delete the job file. & \{F3\} & \begin{tabular}{l}
4.DELETE JOB FILE \\
[4]
\end{tabular} \\
\hline
\end{tabular}

\subsection*{19.2.4When Job is not to be Used}

Job selection can be canceled if the job is not to be used and coordinate data is not to be recorded.
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Select \{F1\} (TOP FIELD) from the menu. & \{MENU\} \{F1\} & \begin{tabular}{|lcl}
\hline 1.JOB [JOB1 & \\
2.SETTING & \\
3.GO TO WORK & \\
[1] [2] [3] & \(\downarrow\)
\end{tabular} \\
\hline 2 Select \{F1\} (JOB). & \{F1\} & \begin{tabular}{|l}
\hline 1.OPEN JOB FILE \\
2.CREATE NEW JOB \\
3.NO JOB FILE \\
[1] [2] [3]
\end{tabular} \\
\hline 3 Job selection will be cancelled when \{F3\} (NO JOB FILE) is selected. & \{F3\} & <SET! > \\
\hline
\end{tabular}

\subsection*{19.3 SETTING}
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline 1 Select \{F1\} (TOP FIELD) from the menu. & \begin{tabular}{l}
\{MENU\} \\
\{F1\}
\end{tabular} & \begin{tabular}{l}
1.JOB [\\
2. SETTING \\
3. GO TO WORK \\
[1] [2] [3] \\
\hline
\end{tabular} \\
\hline 2 Select \{F2\} (SETTING). & \{F2\} & \begin{tabular}{rll}
\hline DIST UNITS & \(:\) FT-10 \\
COORDINATES & \(:\) XYZ \\
EDM MODE & \(:\) FINE \\
OK EDIT &
\end{tabular} \\
\hline \begin{tabular}{l}
3 To change the setting, select \{F2\} (EDIT). \\
- To not change the setting, select \(\{F 1\}\) (OK).
\end{tabular} & \{F2\} & ```
1.US FEET-10THE
2.US FEET-INCHES
3.METERS
 [1]
 [2]
 [3]
``` \\
\hline
\end{tabular}

4 Select \(\{\mathrm{F} 1\}\) to \(\{F 3\}\) to set the unit of distance.
\{F1\} (US FEET-10THE): Display in feet \{F2\} (US FEET-INCHES): Display in feet and inches
\{F3\} (METERS): Display in meters
5 Select \(\{\mathrm{F} 1\}\) to \(\{\mathrm{F} 3\}\) to set the display sequence of coordinates.
\{F1\} (N,E,Z): Display N, E, Z
\{F2\} (E,N,Z): Display E, N, Z
\{F3\} (X,Y,Z): Display X, Y, Z
6 Select \(\{F 1\} \sim\{F 3\}\) to set the distance measurement mode.
\{F1\} (FINE): FINE mode
\{F2\} (CRS-1 mm): COARSE mode (Rounding in the unit of 1 mm )
\{F3\} (CRS-10 mm): COARSE mode (Rounding in the unit of 10 mm )

7 Press \{F1\} (OK) to set.
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{4}{*}{Select
\[
\{\mathrm{F} 1\} \sim\{\mathrm{F} 3\}
\]} & 1.N, E, Z & \\
\hline & 2.E, N, Z & \\
\hline & 3. X, Y, Z & \\
\hline & [1] [2] & [3] \\
\hline
\end{tabular}

Select \(\{F 1\} \sim\{F 3\}\)

Select
\(\{F 1\} \sim\{F 3\}\)

\section*{1. FINE}
2. CRS -1 mm
3. CRS - 10 mm
[1] [2] [3]
\begin{tabular}{|ll|}
\hline DIST UNITS & : METERS \\
COORDINATES & : NEZ \\
EDM MODE & : CRS-10 \\
OK EDIT & \\
\hline
\end{tabular}
\{F1\}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { 1.JOB [ } \\
& \text { 2.SETTING }
\end{aligned}
\]}} & \multirow[t]{2}{*}{]} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{3.GO TO WORK} \\
\hline [1] & [2] & [3] & \(\downarrow\) \\
\hline
\end{tabular}

\subsection*{19.4 GO TO WORK}

The following operations are performed with GO TO WORK.
1) Setting of occupied point and backsight \(\quad \bullet \bullet \bullet \bullet \bullet I N S T\) SETUP
2) Layout
-•••••LAYOUT
3) Ordinary measuring and coordinate saving
\(\bullet \bullet \bullet \bullet \bullet\) TOPO


\subsection*{19.4.1 To Set Occupied Point and Backsight}

To set occupied point
- Selecting from existing coordinate data
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & 1. INST SETUP
2.LAYOUT
3.TOPO
[1] [2] [3] \\
\hline 1 Select \{F1\} (INST SETUP). & \{F1\} & 1.SELECT INST PT
2. CREATE INST PT
3. MEAS KNWN PTS
[1] [2] [3] \\
\hline
\end{tabular}

2 Select \{F1\} (SELECT INST PT).
\{F1\}
```

ENTER INST PT
PT\#: []
\uparrow \& ALP CLR

```

3 Select an existing coordinate point with \{F1\} or \(\{F 2\}\) (Arrow) key, or directly enter a coordinate point.

Enter/
Select PT\#


4 Set with \(\{E N T\}\) key.
\{ENT\}


5 Enter an instrument height.

6 Set with \(\{E N T\}\) key.
\{ENT\}
Enter instrument height

ENTER INST HT INST HT
\[
=1.500_{-}^{\mathrm{CLR}}
\]
1.SELECT BS PT 2. CREATE BS PT
3.BS DIRECTION
[1] [2] [3]
- Setting by entering the coordinate data of a occupied point directly
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & \[
\begin{aligned}
& \text { 1. INST SETUP } \\
& \text { 2. LAYOUT } \\
& \text { 3.TOPO } \\
& {[1] \quad[2] \quad \text { [3] }}
\end{aligned}
\] \\
\hline 1 Select \(\{\mathrm{F} 1\}\) (INST SETUP). & \{F1\} & \begin{tabular}{l}
1.SELECT INST PT \\
2. CREATE INST PT \\
3.MEAS KNWN PTS \\
[1] \\
[2] \\
[3]
\end{tabular} \\
\hline 2 Select \{F2\} (CREATE INST PT). & \{F2\} & \begin{tabular}{|lclll}
\hline ENTER & NEW & POINT: & \\
PT\# : & {\([\)} & & \(]\) \\
DESC: & {\([-\)} & & \(]\) \\
& & & \\
& & ALP & CLR
\end{tabular} \\
\hline 3 Enter the coordinate point of a occupied point and its description. & Enter PT\#, Enter DESC & \begin{tabular}{|lcr}
\hline ENTER & NEW POINT: & \\
PT\# : & [OCC & \\
DESC: & [POINT & \(]\) \\
& \multicolumn{2}{c}{ ALP } \\
& & CLR
\end{tabular} \\
\hline 4 Set with \{ENT\} key. & \{ENT\} & \(\begin{array}{ccr}\mathrm{N} & {[ } & ] \\ \mathrm{E} & {[ } & ] \\ \mathrm{Z} & {[ } & ] \\ & & \text { CLR }\end{array}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 5 Enter occupied point coordinates (N, E, Z). & Enter occupied point coordinate & \(\begin{array}{ll}\mathrm{N} & {[0.000} \\ \mathrm{E} & {[0.000} \\ \mathrm{Z} & {[0.000}\end{array}\) & ]
\(]\)
\(]\)
CLR \\
\hline 6 Set with \{ENT\} key. & \{ENT\} & ```
ENTER INST HT
INST HT
    =0.000_
``` & m
CLR \\
\hline 7 Enter an instrument height. & Enter instrument height & ```
ENTER INST HT
INST HT
 =1.500
``` & \[
\begin{array}{r}
\mathrm{m} \\
\mathrm{CLR}
\end{array}
\] \\
\hline \begin{tabular}{l}
8 Set with \{ENT\} key. \\
- Then, the procedure will move onto backsight setting.
\end{tabular} & \{ENT\} & \begin{tabular}{l}
1.SELECT BS PT 2. CREATE BS PT 3.BS DIRECTION [1] \\
[2] \\
[3]
\end{tabular} & \\
\hline
\end{tabular}
- Seeking an occupied point from existing coordinate data
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & \[
\begin{aligned}
& \text { 1. INST SETUP } \\
& \text { 2. LAYOUT } \\
& \text { 3.TOPO } \\
& \begin{array}{lll}
\text { [1] } & \text { [2] }
\end{array} \text { [3] }
\end{aligned}
\] \\
\hline 1 Select \{F1\} (INST SETUP). & \{F1\} & \begin{tabular}{l}
1.SELECT INST PT \\
2. CREATE INST PT \\
3.MEAS KNWN PTS \\
[1] \\
[2] \\
[3]
\end{tabular} \\
\hline 2 Select \{F3\} (MEAS KNWN PTS). & \{F3\} & \[
\begin{aligned}
& \text { ENTER INST HT } \\
& \text { INST HT } \\
& \quad=0.000-r \text { m }
\end{aligned}
\] \\
\hline 3 Enter an instrument height. & Enter instrument height & ```
ENTER INST HT
INST HT
    =1.500_ m
``` \\
\hline 4 Set with \{ENT\} key. & \{ENT\} & \begin{tabular}{l}
ENTER \# REF PTS \\
\# REF PTS: = \\
CLR
\end{tabular} \\
\hline \begin{tabular}{l}
5 Enter point number to collimate. \\
Collimate point number: 2 to 7 points
\end{tabular} & Enter collimate point number & \begin{tabular}{l}
ENTER \# REF PTS \\
\# REF PTS: = 2 \\
CLR
\end{tabular} \\
\hline 6 Set with \{ENT . & \{ENT\} & \[
\begin{aligned}
& \text { ENTER TARGET HT } \\
& \text { HT OF ROD } \\
& \quad=0.000_{-} \mathrm{m}
\end{aligned}
\] \\
\hline
\end{tabular}

7 Enter a reflector height.

8 Set with \{ENT\} key.

9 Select the coordinate point of a collimate point with \{F1\} or \(\{\mathrm{F} 2\}\) (Arrow) key, or enter the coordinate point directly. *1)

10 Set with \(\{E N T\}\) key.

11 Collimate prism and press \{F1\} (MSR) key. Begin measurement.

12 When the prism measurement is completed, perform measurement for the next collimate point.
- Follow the same procedure.

After the prism is measured the set number of times, the occupied point coordinates will be calculated and the standard deviation will be displayed.

13 Press \{F1\} (OK).
The screen for inputting the coordinate point of an occupied point and its description will be displayed.

14 Enter the coordinate point of an occupied point and its description.
Enter
reflector
height

\section*{ENTER TARGET HT} HT OF ROD

\{ENT\}

Enter/ Select PT\#
\{ENT\}
\{F1\}

Enter PT\#, Enter DESC

\begin{tabular}{|c|c|c|}
\hline dN : & 0000.00 & mm \\
\hline dE: & 0000.00 & \\
\hline dZ: & 0000.00 & \\
\hline OK & & NO \\
\hline \multicolumn{3}{|l|}{ENTER NEW POINT:} \\
\hline PT\# : & [&] \\
\hline \multirow[t]{2}{*}{DESC:} & [&] \\
\hline & ALP & CLR \\
\hline \multicolumn{3}{|l|}{ENTER NEW POINT:} \\
\hline PT\# : & [OCC &] \\
\hline DESC: & [POINT &] \\
\hline & ALP & CLR \\
\hline
\end{tabular}

ENTER NEW POINT:

15 Set with \(\{E N T\}\) key.
\{ENT\}
POINT X SET! ORIENTATION SET!

OK NEZ
\{F1\}
- The backsight is set up based on the previously collimated prism position. Therefore, always press \{OK\} under the condition in which the previous prism backsight collimated.
- Checking collimate point coordinates during prism collimation
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline \multirow[t]{2}{*}{1 To check the collimate point coordinates during prism collimation, select \(\{\mathrm{F} 2\}(\mathrm{CHK})\) key.} & \{F2\} & \begin{tabular}{|ccc|}
\hline MEAS & POINT & \(1 / 2\) \\
PT\# : & {\([P T-01\)} & \(]\) \\
MSR & CHK & HR \\
\hline
\end{tabular} \\
\hline & & \begin{tabular}{|rrr|}
\hline \multicolumn{1}{c|}{\(\downarrow\)} \\
N & {\([\)} & 10.000 \\
E & {\([\)} & 20.000 \\
Z & {\([\)} & 0.000
\end{tabular}\(]\) \\
\hline
\end{tabular}
- Checking prism height during prism collimation

- Checking occupied point coordinates during occupied point/backsight setting
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline \multirow[t]{2}{*}{1 To check the occupied point coordinates during occupied point/backsight setting, select \{F2\} (NEZ) key.} & \{F2\} & \begin{tabular}{l}
POINT X SET! ORIENTATION SET! \\
OK NEZ
\end{tabular} \\
\hline & & \\
\hline
\end{tabular}

\section*{To set backsight}

After completing the occupied point setting, the display for backsight setting will be displayed.

\section*{- Setting from existing coordinate data}
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline - When the occupied point setting is completed, this menu screen will be displayed. & & \begin{tabular}{l}
1.SELECT BS PT 2. CREATE BS PT 3.BS DIRECTION \\
[1] \\
[2] \\
[3]
\end{tabular} \\
\hline 1 Select \{F1\} (SELECT BS PT). & \{F1\} & \begin{tabular}{lrrr}
\hline ENTER & BS & POINT & \\
PT\#: & {\([\)} & & \(]\) \\
& & & \\
\(\uparrow\) & \(\downarrow\) & ALP & CLR
\end{tabular} \\
\hline 2 Select an existing coordinate point with \{F1\} or \{F2\} (Arrow) key, or enter a coordinate point directly. & \begin{tabular}{l}
Enter/ \\
Select PT\#
\end{tabular} & \begin{tabular}{lrrr}
\hline ENTER & BS POINT & \\
PT\#: & [BS-PT_ &] \\
& & & \\
\(\uparrow\) & \(\downarrow\) & ALP & CLR
\end{tabular} \\
\hline 3 Set with \{ENT\} key. & \{ENT\} & \begin{tabular}{lll}
\hline \multicolumn{2}{|c|}{ ENTER } & BS HEIGHT \\
BS HT & \\
& \(=0.000^{m} \quad \mathrm{~m}\) \\
& &
\end{tabular} \\
\hline 4 Enter a reflector height. & Enter reflector height & \(\begin{aligned} & \text { ENTER BS HEIGHT } \\ & \text { BS HT } \\ & \\ &=1.500\end{aligned}\) \\
\hline 5 Set with \{ENT\} key. & \{ENT\} & \begin{tabular}{l}
SIGHT BS TARGET \\
1.MEAS ANG+DIST \\
2.MEAS ANG ONLY
\end{tabular} \\
\hline \begin{tabular}{l}
6 Measure collimate point to set up backsight. To measure distance, and to seek deviation with missing line distance calculated from coordinate data, select \{F1\} (MEAS ANG + DIST); and to set up only the angle, select \{F2\} (MEAS ANG ONLY). \\
- For example, select \(\{\mathrm{F} 1\}\)
\end{tabular} & & \\
\hline 7 Select \{F1\} (MSR). The distance to collimate point will be measured and the difference to the distance sought from coordinate data will be displayed. & \{F1\} & \(\begin{array}{lr}\text { BS DIST } & \text { CHECK } \\ \text { dDIST } & \\ = & 0.000 \mathrm{~m} \\ \text { MSR } & \\ \end{array}\) \\
\hline 8 Pressing \{F4\} (OK) will complete the backsight setting. & \{F4\} & ```
1.INST SETUP
2.LAYOUT
3.TOPO
 [1]
 [2]
 [3]
``` \\
\hline
\end{tabular}
- Setting by entering the coordinate data of a collimate point directly
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline - After the occupied point setting is completed, this menu will be displayed. & & \begin{tabular}{l}
1.SELECT BS PT 2. CREATE BS PT \\
3.BS DIRECTION \\
[1] \\
[2] \\
[3]
\end{tabular} \\
\hline 1 Select \{F2\} (CREATE BS PT). & \{F2\} & \begin{tabular}{l}
1.INPUT PT 2.MEAS PT \\
[1] [2]
\end{tabular} \\
\hline 2 Select \{F1\} (INPUT PT). & \{F1\} & \begin{tabular}{lclll}
\hline ENTER & NEW & POINT & \\
PT\# : & {\([\)} & & \\
DESC: & {\([-\)} & & \(]\) \\
& & & \\
& & ALP & CLR
\end{tabular} \\
\hline 3 Enter the coordinate point of a collimate point and its description. & \[
\begin{gathered}
\text { Enter PT \#, } \\
\text { Enter } \\
\text { DESC }
\end{gathered}
\] & \begin{tabular}{lllr}
\hline ENTER & NEW POINT : & \\
PT\# : & [BS & \\
DESC \(:\) & {\([P O I N T\)} & \(]\) \\
& \multicolumn{2}{r}{ ALP } & CLR
\end{tabular} \\
\hline 4 Set with \{ENT\} key. & \{ENT\} &  \\
\hline 5 Enter collimate point coordinates (N, E, Z). & Enter collimate point coordiante & \(\begin{array}{lllr}\mathrm{N} & {[10.000} & & ] \\ \mathrm{E} & {[10.000} & & ] \\ Z & {[0.000} & & ] \\ & & \text { ALP } & \text { CLR }\end{array}\) \\
\hline 6 Set with \{ENT\} key. & \{ENT\} & \[
\begin{aligned}
& \text { ENTER BS HEIGHT } \\
& \text { BS HT } \\
& \\
& \\
& \\
& =0.000-\quad \mathrm{m}
\end{aligned}
\] \\
\hline 7 Enter a reflector height. & Enter reflector height & \[
\begin{aligned}
& \text { ENTER BS HEIGHT } \\
& \text { BS HT } \\
& \\
& \\
& \\
& =1.500-\quad \mathrm{m} \\
& \text { CLR }
\end{aligned}
\] \\
\hline 8 Set with \{ENT\} key. & \{ENT\} & \begin{tabular}{l}
SIGHT BS TARGET \\
1.MEAS ANG+DIST \\
2.MEAS ANG ONLY
\end{tabular} \\
\hline 9 From here to the backsight setting, follow the same procedure to set backsight from existing coordinate data. & & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& \downarrow
\end{aligned}
\] \\
\hline
\end{tabular}
- Using an existing horizontal angle and saving the coordinate data of the collimate point
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline - After the occupied point setting is completed, this menu will be displayed. & & \begin{tabular}{|c}
\hline 1.SELECT BS PT \\
2.CREATE BS PT \\
3.BS DIRECTION \\
[1] [2] [3]
\end{tabular} \\
\hline 1 Select \{F2\} (CREATE BS PT). & \{F2\} & \begin{tabular}{l}
1.INPUT PT 2.MEAS PT \\
[1] [2]
\end{tabular} \\
\hline 2 Select \{F2\} (MEAS PT). & \{F2\} & \begin{tabular}{|lclll|}
\hline ENTER & NEW & POINT: & \\
PT\# : & {\([\)} & & \(]\) \\
DESC: & {\([-\)} & & \(]\) \\
& & & \\
& & ALP & CLR
\end{tabular} \\
\hline 3 Enter the coordinate point of a collimate point and its description to record. & Enter PT \#, Enter DESC & \begin{tabular}{|llr}
\hline ENTER & NEW POINT: \\
PT\# : & [BS & \\
DESC: \(: ~\) & [POINT & \(]\) \\
& \multicolumn{2}{r|}{ ALP } \\
& & CLR
\end{tabular} \\
\hline 4 Set with \{ENT\} key. & \{ENT\} & \begin{tabular}{|llll|}
\hline \multicolumn{2}{|c|}{ ENTER } & BS HEIGHT & \\
BS HT & & \\
& \(=0.000^{\prime} \quad \mathrm{m}\) \\
& & &
\end{tabular} \\
\hline 5 Enter a reflector height. & Enter reflector height & \begin{tabular}{|lll}
\hline ENTER & BS HEIGHT & \\
BS HT & & \\
& \(=1.500^{\prime} \quad \mathrm{m}\) \\
& & CLR
\end{tabular} \\
\hline 6 Set with \{ENT\} key. & \{ENT\} & \begin{tabular}{l}
SIGHT BS TARGET \\
HD : \\
m \\
MSR
\end{tabular} \\
\hline 7 Collimate the reflector and press \{F1\} (MSR) key to begin measurement. & \{F1\} & SIGHT BS TARGET
```

HD* <<< m

``` \\
\hline 8 After measuring the reflector, record the coordinate data to complete the setting. & & 1.INST SETUP
2. LAYOUT
3.TOPO
[1] [2] [3] \\
\hline
\end{tabular}
- Setting by entering backsight directly
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Operating procedure } & Operation & Display \\
\hline\(\bullet\) After the occupied point setting is completed, & & \begin{tabular}{cc} 
1.SELECT BS PT \\
this menu will be displayed.
\end{tabular} \\
& & \begin{tabular}{cc} 
2. CREATE BS PT \\
[1] DIRECTION \\
[2] [3]
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline 1 Select \{F3\} (BS DIRECTION). & \{F3\} & \begin{tabular}{ll}
\hline ENTER BS ANGLE & \\
BS AN [ & \\
DDD.MMSS & \\
OSET & CLR \\
\hline
\end{tabular} \\
\hline 2 Enter a backsight directly. Pressing \{F1\} (0SET) will enter 0. & Enter backsight & \begin{tabular}{|ll|}
\hline ENTER BS ANGLE & \\
BS AN[0.0000_ & \\
DDD.MMSS & \\
OSET & CLR \\
\hline
\end{tabular} \\
\hline 3 Set with \{ENT\} key. & \{ENT\} &  \\
\hline 4 Collimate the reflector and press \(\{F 3\}\) (YES). Set backsight to end. & \{F3\} & 1.INST SETUP
2.LAYOUT
3.TOPO
[1] [2] [3] \\
\hline
\end{tabular}

\subsection*{19.4.2To Layout}
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & ```
1.INST SETUP
2.LAYOUT
3.TOPO
    [1]
        [2]
        [3]
``` \\
\hline 1 Select \{F2\} (LAYOUT). & \{F2\} & \[
\begin{aligned}
& \text { ENTER TARGET HT } \\
& \text { HT OF ROD } \\
& \quad=0.000-\mathrm{m}
\end{aligned}
\] \\
\hline 2 Enter a reflector height. & Enter reflector height & ```
ENTER TARGET HT
HT OF ROD
 =1.500_ m
``` \\
\hline 3 Set with \{ENT\} key. & \{ENT\} & \(\begin{array}{ccrr}\text { ENTER } & \text { LAYOUT } & \text { POINT\# } \\ \text { PT\# : } & {[ } & & ] \\ \text { DESC: } & \text { [ } & & \\ \uparrow & \downarrow & \\ & \end{array}\) \\
\hline 4 Select a coordinate point to layout with \{F1\} or \{F2\} (Arrow) key, or enter a coordinate point directly. & \begin{tabular}{l}
Enter/ \\
Select PT\#
\end{tabular} & \begin{tabular}{ccr} 
ENTER & LAYOUT & POINT\# \\
PT\#: & {\([P 01-\)} & \(]\) \\
DESC: & {\(\left[\begin{array}{lrr}{[ } & & ] \\
\uparrow & \downarrow & \text { ALP }\end{array}\right]\) CLR }
\end{tabular} \\
\hline \begin{tabular}{l}
5 Set with \{ENT\} key. The data displayed will be Line 1: Horizontal angle to layout point (Difference) \\
Line 2: Cross directional distance to layout point (Difference) \\
Line 3: Vertical distance to layout point (Difference)
\end{tabular} & \{ENT\} & \begin{tabular}{|cccc|}
\hline dHA: & \(4^{\circ} 5^{\circ} 00^{\prime} 00 "\) \\
IN : & & & m \\
CUT : & & & m \\
MSR & R/L & REC & NEXT
\end{tabular} \\
\hline \begin{tabular}{l}
6 Pressing \{F1\} (MSR) will perform distance measurement and it will also display the distance difference. \\
- Data is updated each time (MSR) is performed.
\end{tabular} & \{F1\} & \begin{tabular}{rr} 
dHA: & \(45^{\circ} 00^{\prime} 00 \mathrm{\prime} \mathrm{\prime}\) \\
IN : & 2.500 m \\
CUT: & 0.010 m \\
MSR & R/L \\
\hline
\end{tabular} \\
\hline \begin{tabular}{l}
7 Pressing \{F2\} (R/L) key will display distance difference in the horizontal direction, instead of the difference in the horizontal angle. \\
Line 1: Horizontal distance to layout point (Difference) \\
Line 2: Cross directional distance to layout point (Difference) \\
Line 3: Vertical distance to layout point (Difference)
\end{tabular} & \{F2\} & \begin{tabular}{rrr}
\(R:\) & 1.250 m \\
IN : & & 2.500 m \\
CUT : & & 0.010 m \\
MSR & NEZ & REC \(\quad\) NEXT
\end{tabular} \\
\hline
\end{tabular}

8 Pressing \{F2\} (NEZ) key will display coordinate data.
Line 1: N coordinate ( E coordinate)
Line 2: E coordinate ( N coordinate)
Line 3: Z coordinate
- Pressing \{F2\} (dHA) will return to the angle difference display.

9 Press \{F3\} (REC) key to record the data and move to layout for the next point, and press \{F4\} (NEXT) key to move to layout for the next point without saving the data.
The number in the coordinate point will automatically be incremented.

19.4.3To Conduct Ordinary Measurement and to Record Coordinates
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & 1.INST SETUP
2.LAYOUT
3.TOPO
[1] [2] [3] \\
\hline 1 Select \(\{\mathrm{F} 3\}\) (TOPO). & \{F3\} &  \\
\hline 2 Enter the coordinate point and its description to record. *1) & Enter PT\#, Enter DESC &  \\
\hline 3 Set with \{ENT\} key. * 2) & \{ENT\} & \begin{tabular}{|lll|}
\hline PT\# : & [P01 & \\
DESC: & [POINT & \(]\) \\
HT ROD \(:\) & 1.500 & m \\
FAST EDIT & HR & MSR
\end{tabular} \\
\hline 4 To record the coordinate data without checking measured data, select \{F1\} (FAST) key. & \{F1\} & \begin{tabular}{|lll}
\hline PT\# : & [PO1 & ] \\
DESC: & [POINT & ] \\
HT ROD & 1.500 & m \\
>Measuring... &
\end{tabular} \\
\hline 5 The measured coordinate data will be recorded, and the number in the coordinate point will automatically be incremented. & Save data &  \\
\hline 6 To record the coordinate data while checking measured data, select \{F4\} (MSR) key. & \{F4\} &  \\
\hline 7 Measure with \{F1\} (MSR) key. & \{F1\} & \(\begin{array}{lr}\text { VA: } & 60^{\circ} 00^{\prime} 00 \prime \\ \text { HA: } & 120^{\circ} 00^{\prime} 00 \prime \\ \text { HD: } & 10.000 \mathrm{~m} \\ \text { MSR } & \text { SD } \\ \text { NEZ } & \text { NEC }\end{array}\) \\
\hline
\end{tabular}

8 Pressing \{F2\} (SD) key will switch the distance display to the SD display.

9 Pressing \{F3\} (NEZ) key will switch to the coordinate display.

10 Pressing \{F3\} (A/D) key will switch to the previously measured angle/measured distance display.

11 Pressing \{F4\} (REC) key will record the data.
- Data to be recorded are recalculated from the currently displayed angle and horizontal distance (angle offset function).

To record the coordinate data of the collimate point, record (REC) them without moving the angle after measurement (MSR).

\{F3\}
\begin{tabular}{|llr|}
\hline \(\mathrm{N}:\) & & -5.000 m \\
\(\mathrm{E}:\) & 8.660 m \\
\(\mathrm{Z}:\) & & 5.774 m \\
MSR & HD & \(\mathrm{A} / \mathrm{D} \quad\) REC \\
\hline
\end{tabular}
\{F3\}
\begin{tabular}{lr} 
VA: & \(60^{\circ} 00^{\prime} 00^{\prime \prime}\) \\
HA: & \(120^{\circ} 00^{\prime} 00^{\prime \prime}\) \\
HD: & 11.547 m \\
MSR & HD
\end{tabular}
\begin{tabular}{|lll|}
\hline PT\# : & [PO2 & ] \\
DESC : & [POINT & ] \\
HT ROD : & 1.500 & m \\
FAST EDIT & HR & MSR \\
\hline
\end{tabular}
*1) To change the reflector height, select \{F2\}(HR) key to switch to the screen for reflector height input.

*2) To edit a coordinate point and its description, select \{F2\} (EDIT) key to return to the editing mode.
\begin{tabular}{|c|c|c|}
\hline PT\#: [P01 & & PT\#: [P01 \\
\hline DESC: [POINT ] & \{F2\} & DESC: [POINT ] \\
\hline HT ROD: 1.500 m & & HT ROD: 1.500 m \\
\hline FAST EDIT HR MSR & & HR ALP CLR \\
\hline
\end{tabular}

\subsection*{19.5 DATA MANAGER}

The following operations can be performed with DATA MANAGER.
1) Adding coordinate data
2) Deleting coordinate data
\(\bullet \bullet \bullet \bullet \bullet A D D ~ P O I N T ~\)
3) Viewing coordinate data
\(\bullet \bullet \bullet \bullet \bullet D E L E T E ~ P O I N T\)
4) Editing coordinate data
5) Transferring coordinate data
-•••••VIEW POINT
\(\bullet \bullet \bullet \bullet \bullet\) EDIT POINT
\(\bullet \bullet \bullet \bullet \bullet D A T A ~ T R A N S F E R\)
\begin{tabular}{|c|c|c|c|c|}
\hline 4.DATA MANAGER
[4] & \(\uparrow\) & \{F1\} & \begin{tabular}{l}
1.ADD POINT \\
2.DELETE POINT \\
3.VIEW POINT \\
[1] \\
[2] \\
[3]
\end{tabular} & \(\downarrow\) \\
\hline
\end{tabular}


\subsection*{19.5.1 To Add Coordinate Data}
\begin{tabular}{|c|c|c|c|}
\hline Operating procedure & Operation & \multicolumn{2}{|l|}{Display} \\
\hline & & 1. ADD POINT
2.DELETE POINT
3.VIEW POINT
[1] [2] [3] & \(\downarrow\) \\
\hline \begin{tabular}{l}
Select \{F1\} (ADD POINT). \\
Coordinates can be added through the following procedure: \\
1. COORDINATES \\
2. REFLINE \\
3. TAPE
\end{tabular} & \{F1\} & 1. COORDINATES
2.REFLINE
3.TAPE
\([1] \quad[2] \quad[3]\) & \\
\hline
\end{tabular}
- Entering coordinates directly (COORDINATES)
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & 1. COORDINATES
2.REFLINE
3.TAPE
[1] [2] [3] \\
\hline 1 Select \{F1\} (COORDINATES). & \{F1\} & \begin{tabular}{|lclll|}
\hline ENTER & NEW & POINT: & \\
PT\# : & {\([\)} & & \(]\) \\
DESC: & [ & & & \(]\) \\
& & & \\
& & ALP & CLR
\end{tabular} \\
\hline 2 Enter a coordinate point and its description. & Enter PT\#, Enter DESC & \begin{tabular}{lllr} 
ENTER & NEW POINT: & \\
PT\# : & [PO1 & \\
DESC: & [POINT & \(]\) \\
& \multicolumn{2}{r}{ ALP } & CLR
\end{tabular} \\
\hline 3 Set with \{ENT\} key. & \{ENT\} & \(\begin{array}{llr}\mathbf{N} \text { [ } & \\ \mathbf{E} \text { [- } & ] \\ \mathrm{Z} & {[ } & ] \\ & & \text { CLR }\end{array}\) \\
\hline
\end{tabular}

4 Enter N/E/Z coordinates.

5 Set with \{ENT\} key.
The coordinate point and the job name will be displayed and the procedure will be completed.

Enter NEZ
Coordinate Data
\{ENT\}

1. COORDINATES
2. REFLINE
3.TAPE
[1] [2] [3]

\section*{- REFLINE}

\begin{tabular}{|c|c|c|c|}
\hline Operating procedure & Operation & \multicolumn{2}{|l|}{Display} \\
\hline & & 1. COORDINATES
2.REFLINE
3.TAPE
[1] [2] [3] & \\
\hline 1 Select \{F2\} (REFLINE). & \{F2\} & \begin{tabular}{|lll}
\hline ENTER & REF1 & \\
PT\#: & {\([\)} & \\
DESC: & & \\
\(\uparrow\) & \(\downarrow\) & \\
& & \\
& & ALP
\end{tabular} & \[
\begin{array}{r}
\text { ] } \\
\text { CLR }
\end{array}
\] \\
\hline 2 To acquire coordinate data for reference "REF1," select an existing coordinate point with \(\{\mathrm{F} 1\}\) or \{F2\} (Arrow) key, or enter a coordinate point directly. & Enter/ Select PT\# & \begin{tabular}{ll} 
ENTER & REF1 \\
PT\#: & [PO1_ \\
DESC: & \\
\(\uparrow\) & \(\downarrow\)
\end{tabular}\(\quad\) ALP & \[
\begin{array}{r}
\text { ] } \\
\text { CLR }
\end{array}
\] \\
\hline 3 Set with \{ENT\} key. & \{ENT\} & \begin{tabular}{|lll}
\hline ENTER & REF2 & \\
PT\# : & {\([\)} & \\
DESC: & & \\
\(\uparrow\) & \(\downarrow\) & ALP
\end{tabular} & ]
CLR \\
\hline
\end{tabular}

4 Acquire coordinate data for Reference "REF2" in the same manner.

5 Enter the distance (DISTANCE) from reference "REF1" to the direction of "REF2".

6 Set with \{ENT\} key.

7 Enter the horizontal direction distance (OFFSET). To select directions, press \(\{\mathrm{F} 1\}\) (LEFT) to move to the left and \{F2\} (RIGHT) to the right.

8 Set with \{ENT\} key.
The conditions for calculating coordinate data will be displayed.
\(9\{F 4\}(\uparrow / \downarrow)\) will allow the switching of the "REF1/ REF2" display and "DISTANCE/OFFSET" display.

10 Press \(\{\mathrm{F} 1\}\) (OK) to calculate coordinate data. After the coordinate data is calculated, the procedure will move onto coordinate point/ description entries.
- The procedures below will be the same as the ones for entering coordinates directly (COORDINATE).

ENTER REF2
PT\#: [P02_ ] DESC:

Enter
DISTANCE
\{ENT\}

Enter OFFSET, \{F1\} or \{F2\}
\{ENT\}
\{F4\}
\begin{tabular}{|crr|}
\hline DIS: & & 10.000 m \\
R : & & 5.000 m \\
OK & EDIT & \\
\hline
\end{tabular}

ENTER NEW POINT: PT\# :
DESC:

ALP CLR

Enter PT\#, Enter description
\{ENT\}

ENTER NEW POINT:
PT\#: [P03
DESC: [POINT
ALP CLR
\begin{tabular}{|c|c|c|}
\hline The calculated value will be displayed for the coordinate data. Set with \{ENT\} key. & \{ENT\} & \begin{tabular}{l}
\(\left.\begin{array}{|ccc|}\hline \text { PT\#: } & \begin{array}{c}\text { [P03 } \\
\text { STORED ! } \\
\text { [JOB 1 }\end{array} & \text { ] }\end{array}\right]\) \\
\(\downarrow\) \\
\begin{tabular}{l} 
1.COORDINATES \\
2.REFLINE \\
3.TAPE \\
[1] [2] [3]
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
- TAPE

\begin{tabular}{|l|l|lll|}
\hline Operating procedure & Operation & & Display \\
\hline
\end{tabular}

19.5.2 To Delete Coordinate Data
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & \begin{tabular}{l}
1.ADD POINT \\
2.DELETE POINT \\
3.VIEW POINT \\
[1] \\
[2] \\
[3]
\end{tabular} \\
\hline 1 Select \{F2\} (DELETE POINT). & \{F2\} & \begin{tabular}{l}
1.DESIGN PT \\
2.MEASUREMENT PT \\
[1] [2]
\end{tabular} \\
\hline \begin{tabular}{l}
2 Select the type of data to delete. \\
\{F1\} (DESIGN PT) \\
\(\bullet \bullet \bullet \bullet\) Coordinate data entered directly and recorded for addition of coordinates \\
\{F2\} (MEASUREMENT PT) \\
-••••• Coordinate data observed and recorded through layout, TOPO, etc.
\end{tabular} & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { or } \\
\{\mathrm{F} 2\}
\end{gathered}
\] & \(\left.\begin{array}{ccccr}\text { ENTER } & \text { PT } & \text { TO } & \text { DEL } & \\ \text { PT\# : } & \text { [ } & & \\ \text { DESC: } & & {[ } & & \\ \text { ¢ } & \downarrow & \\ & \downarrow & & \text { ALP } & \text { CLR }\end{array}\right]\) \\
\hline
\end{tabular}


\subsection*{19.5.3To View Coordinate Data}
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & \begin{tabular}{l}
1.ADD POINT \\
2.DELETE POINT \\
3.VIEW POINT \\
[1] \\
[2] \\
[3]
\end{tabular} \\
\hline 1 Select \{F3\} (VIEW POINT). & \{F3\} & \begin{tabular}{l}
1.DESIGN PT \\
2.MEASUREMENT PT \\
[1] [2]
\end{tabular} \\
\hline \begin{tabular}{l}
2 Select type of data to view. \\
\{F1\} (DESIGN PT) \\
\(\bullet \bullet \bullet \bullet \bullet\) Coordinate data entered directly and recorded for addition of coordinates \\
\{F2\} (MEASUREMENT PT) \\
-••••• Coordinate data observed and recorded through layout, TOPO, etc.
\end{tabular} & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { or } \\
\{\mathrm{F} 2\}
\end{gathered}
\] & \begin{tabular}{llr} 
DESIGN & PT & \\
PT\# : & [PO1 & ] \\
DESC: & [POINT & ] \\
\(\uparrow\) & \(\downarrow\) & NEZ
\end{tabular} \\
\hline 3 Select a coordinate point to view with \(\{\mathrm{F} 1\}\) or \(\{\mathrm{F} 2\}\) (Arrow) key. & \begin{tabular}{l}
Enter/ \\
Select PT\#
\end{tabular} & \(\begin{array}{llr}\text { DESIGN } & \text { PT } & \\ \text { PT\#: } & \text { [P99 } & ] \\ \text { DESC: } & \text { [POINT } & ] \\ \uparrow & \downarrow & \text { NEZ }\end{array}\) \\
\hline 4 To check the coordinate data, press \{F4\} (NEZ). & \{F4\} & \(\left.\begin{array}{rlrr}\text { N } & {[ } & 0.000 & ] \\ \mathrm{E} & {[ } & 0.000 & ] \\ \mathrm{Z} & {[ } & & 0.000\end{array}\right]\) \\
\hline 5 Pressing \{F4\} (PT\#) will return to the coordinate point display. & \{F4\} & \begin{tabular}{llr}
\hline DESIGN & PT & \\
PT\# : & [P99 & ] \\
DESC: & [POINT & \(]\) \\
\(\uparrow\) & \(\downarrow\) & NEZ
\end{tabular} \\
\hline
\end{tabular}

\subsection*{19.5.4To Edit Coordinate Data}
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline - Only entered coordinate data (design data) can be edited. & & \begin{tabular}{l}
4.EDIT POINT \\
5. DATA TRANSFER \\
[4] \\
[5]
\end{tabular} \\
\hline 1 Select \(\{\) F1\} (EDIT POINT). & \{F1\} & \begin{tabular}{|llr}
\hline DESIGN & PT & \\
PT\# : & [P01 & \\
DESC: & [POINT & \(]\) \\
\(\uparrow\) & \(\downarrow\) & EDIT
\end{tabular} \\
\hline 2 Select a coordinate point to edit with \{F1\} or \{F2\} (Arrow) key. & \[
\begin{gathered}
\{\mathrm{F} 1\} \text { or } \\
\{\mathrm{F} 2\}
\end{gathered}
\] & \begin{tabular}{|llr|}
\hline DESIGN & PT & \\
PT\#: & [P99 & \\
DESC: & [POINT & ] \\
\(\uparrow \uparrow\) & \(\downarrow\) & EDIT
\end{tabular} NEZ \\
\hline 3 Switch to the editing mode by pressing \{F3\} (Edit) key. & \{F3\} & \begin{tabular}{|llr} 
DESIGN & PT & \\
PT\#: & [P99 & \\
DESC: & [POINT & \(]\) \\
& & ALP \\
& &
\end{tabular} \\
\hline 4 After editing the coordinate point and its description, set with \{ENT\} key. & Edit data \{ENT\} & \(\begin{array}{llr}\text { DESIGN } & \text { PT } \\ \text { PT\# : } & \text { [PT-99 } & \\ \text { DESC: } & \text { [POINT } & ] \\ \uparrow & \downarrow & \text { EDIT }\end{array}\) \\
\hline \multirow[t]{2}{*}{- Coordinate data can be edited with the editing mode in the same manner.} & & \begin{tabular}{|cccccc|}
\hline \(\mathbf{N}\) & {\([\)} & & 0.000 & \(]\) \\
E & {\([\)} & & 0.000 & \(]\) \\
\(\mathbf{Z}\) & {\([\)} & & 0.000 & \\
\(\uparrow\) & \(\downarrow\) & EDIT & PT\#
\end{tabular} \\
\hline & \{F3\} & \(\begin{array}{llr}\mathrm{N} & {[0.000} & \\ \mathrm{E} & {[0.000} & ] \\ \mathrm{Z} & {[0.000} & ] \\ & & \text { CLR }\end{array}\) \\
\hline
\end{tabular}
19.5.5To Transfer Coordinate Data
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & \begin{tabular}{l}
4.EDIT POINT \\
5.DATA TRANSFER \\
[4] \\
[5]
\end{tabular} \\
\hline \begin{tabular}{l}
1 Select \{F2\} (DATA TRANSFER). \\
Data transfer corresponds to the following two types of transmission formats: \\
F1: GTS FORMAT \\
F2: SSS FORMAT
\end{tabular} & \{F2\} & \begin{tabular}{l}
DATA TRANSFER \\
F1:GTS FORMAT \\
F2:SSS FORMAT
\end{tabular} \\
\hline
\end{tabular}
- Setting Transmission Protocol
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ Operating procedure } & Operation & Display \\
\hline - \begin{tabular}{l} 
Always check transmission protocol before \\
performing data transfer.
\end{tabular} & & DATA TRANSFER \\
& & F1: GTS FORMAT \\
F2:SSS FORMAT
\end{tabular}

Set items for transmission protocol are as follows according to the format.
- GTS FORMAT
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Item } & Selecting Item & \multicolumn{1}{c|}{ Contents } \\
\hline Protocol & \begin{tabular}{c} 
[ACK/NAK], \\
[ONE WAY]
\end{tabular} & \begin{tabular}{l} 
Setting Protocol \\
[ACK/NAK] or [ONE WAY] communication
\end{tabular} \\
\hline Baud rate & \begin{tabular}{c}
\(1200,2400,4800\), \\
\(9600,19200,38400\)
\end{tabular} & \begin{tabular}{l} 
Setting transfer speed \\
\(1200 / 2400 / 4800 / 9600 / 19200 / 38400\) baud
\end{tabular} \\
\hline Char. / Parity & \begin{tabular}{c} 
[7/EVEN], [7/ODD], \\
[8/NON]
\end{tabular} & \begin{tabular}{l} 
Setting data length and parity. \\
[7 bit, even], [7 bit, odd], [8 bit,none]
\end{tabular} \\
\hline Stop Bits & 1,2 & Setting Stop 1 bit or 2bits \\
\hline
\end{tabular}
- SSS FORMAT
\begin{tabular}{|l|c|l|}
\hline \multicolumn{1}{|c|}{ Item } & Selecting Item & \multicolumn{1}{c|}{ Contents } \\
\hline Baud rate & \begin{tabular}{c}
\(1200,2400,4800\), \\
\(9600,19200,38400\)
\end{tabular} & \begin{tabular}{l} 
Setting transfer speed \\
\(1200 / 2400 / 4800 / 9600 / 19200 / 38400\) baud
\end{tabular} \\
\hline Char. / Parity & \begin{tabular}{c} 
[7/EVEN], [7/ODD], \\
[8/NON]
\end{tabular} & \begin{tabular}{l} 
Setting data length and parity. \\
[7 bit, even], [7 bit, odd], [8 bit,none]
\end{tabular} \\
\hline Stop Bits & 1,2 & Setting Stop 1 bit or 2bits \\
\hline
\end{tabular}
- Receiving coordinate data
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & \begin{tabular}{l}
DATA TRANSFER \\
F1:GTS FORMAT \\
F2:SSS FORMAT
\end{tabular} \\
\hline \begin{tabular}{l}
1 Select the transmission format used for receiving data. \\
F1: GTS FORMAT \\
F2: SSS FORMAT
\end{tabular} & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { or } \\
\{\mathrm{F} 2\}
\end{gathered}
\] & \begin{tabular}{|l|}
\hline DATA TRANSFER \\
F1: SEND DATA \\
F2: LOAD DATA \\
F3: COMM. PARAMETERS
\end{tabular} \\
\hline 2 Select \{F2\} (LOAD DATA). & \{F2\} & ```
LOAD COORD. DATA
>OK ?
[YES] [NO]
``` \\
\hline 3 Press \(\{F 3\}\) (YES) to begin the coordinate data receiving process. & \{F3\} & ```
LOAD COORD. DATA
 < Loading Data ! >
 STOP
``` \\
\hline
\end{tabular}

\section*{- Sending coordinate data}
\begin{tabular}{|c|c|c|}
\hline Operating procedure & Operation & Display \\
\hline & & \begin{tabular}{l}
DATA TRANSFER \\
F1:GTS FORMAT \\
F2:SSS FORMAT
\end{tabular} \\
\hline \begin{tabular}{l}
1 Select the transmission format used for receiving data. \\
F1: GTS FORMAT \\
F2: SSS FORMAT
\end{tabular} & \[
\begin{gathered}
\{\mathrm{F} 1\} \\
\text { or } \\
\{\mathrm{F} 2\}
\end{gathered}
\] & DATA TRANSFER
F1: SEND DATA
F2: LOAD DATA
F3: COMM. PARAMETERS \\
\hline 2 Select \{F1\} (SEND DATA). & \{F1\} &  \\
\hline 3 Press \{F3\} (YES) to begin the coordinate data sending process. & \{F3\} & ```
SEND COORD. DATA
    < Sending Data ! >
        STOP
``` \\
\hline
\end{tabular}

\section*{20 SPECIAL ACCESSORIES}

The following are optional accessories which are sold separately from the GM.
\(\mathbb{C}\) Target and power supply optional accessories: see Section 21 "BATTERY SYSTEM". and 22
"PRISM SYSTEM".

\section*{- Plumb bob}

The plumb bob can be used to set up and center the instrument on days when there is little wind. To use the plumb bob, unwind its cord, pass it through the cord grip piece as shown in the figure to adjust its length, then suspend it from the hook attached to the centering screw.
- Tubular compass (CP7)

Slide the tubular compass into the tubular compass slot, loosen the clamp screw, then rotate the top part of the instrument until the compass needle bisects the index lines. The telescope's Face 1 sighting direction in this position will indicate magnetic north. After use, tighten the clamp and remove the compass from the slot.
- The tubular compass is susceptible to the influence of nearby magnets or metal. Such influence could cause it to fail to accurately indicate magnetic north. Do not use magnetic north as indicated by this compass for base line surveying.
- Telescope eyepiece lens (EL7)

Magnification: 40X
Field of view : \(1^{\circ} 20^{\prime}\)
- Diagonal eyepiece (DE27)

The diagonal eyepiece is convenient for observations near the nadir and in narrow spaces.
Magnification: 30X
After removing the handle from the GM, loosen the attachment screw to remove the telescope eyepiece. Then screw the diagonal lens into place.
\(\mathbb{3}\) Handle removal method: see Section 1.1
"Nomenclature".

\section*{- Solar filter (OF3A)}

During solar observation, attach it to the objective lens of the GM to protect its interior and the eyes of the operator. The filter part can be flipped up without being removed.

- Power cable/Interface cable (optional accessory)

Connect the instrument to a host computer using the following cables.
\begin{tabular}{|l|ll|}
\hline Cable & Notes & \\
\hline DOC210 & Pin number and signal level & \(:\) RS232C compatible \\
& D-Sub connector & \(: 9\) pins (female) \\
\hline
\end{tabular}

\section*{21 BATTERY SYSTEM}

Operate your instrument with the following combinations of power equipment.
- For details about batteries and chargers, refer to each dedicated manual.
- Never use any combination other than those indicated below. If you do, the instrument could be damaged.
- Those indicated by * are standard accessories. Others are optional accessories for Low Temperature Models.

\section*{Note}
- Dedicated power cables differ according to the country or the area where the instrument is used. Contact your local dealer for the details.

\section*{22 PRISM SYSTEM}

Select a prism or a target depending on your purpose. The following are all special accessories (sold separately).
- When using a reflecting prism equipped with a target for distance and angle measurements, be sure to direct the reflective prism correctly and sight the center of the prism target accurately.
- Each reflective prism has its own prism constant value. When changing prisms, be sure to change the prism constant correction value.

- Plug-4 is necessary for the tribrach adaptor-2, tribrach adaptor-S2 and pole adaptor-F2 to coincide with the height of this series.
Use the above prisms after setting them at the same height as the instruments. To adjust the height of prism set, change the position of fixing screws.
- During a traverse observavtion, it is recommended to use the same type (tribrach-TR-102/112) of tribrach for the target.
- Prism-2

Prism constant correction values differ depending on the prism holders to use. Check the own value which is written on the holder in many cases.
Prism constant correction value : \(0 \mathrm{~mm} /-30 \mathrm{~mm}\)
Aperture \(: 58 \mathrm{~mm}\)
- Prism-5

Prism constant correction value : 0 mm
Aperture \(: 32 \mathrm{~mm}\)
- Reflective sheet target (RS series)

Prism constant correction value : 0 mm
Aperture : Target size
- 2-point target (2RT500-K)

This target is used for two-distance offset measurement.
Prism constant correction value : 0 mm
Aperture \(: 50 \mathrm{~mm}\)

- Base Plate (TR-101/102 series)

The circular level on the base plate for prism should be adjusted in the same way with the circular level on the main body.
『ア"18.1 Circular Level"

\section*{23 ERROR DISPLAYS}

The following is a list of the error messages displayed by the instrument and the meaning of each message.
- There is a possibility that an unexpected error occasionally occurs when using an old battery. In such a case, exchange it for a new battery, and please check the operation of the instrument.
- If error still persist after attempting to clear them, contact your local dealer.
\begin{tabular}{|c|c|c|}
\hline Error code & Description & Countermeasures \\
\hline 3 points required & When area calculating, there are less than 3 points coordinate data in selected file. & Confirm the file data and calculate again. \\
\hline BadCondition & \begin{tabular}{l}
The air is shimmering a lot, etc., measuring conditions are poor. \\
The center of the target cannot be sighted. \\
Unsuitable distance measurement conditions when reflectorless measurement is set. When reflectorless measurement is set, distance cannot be measured because the laser beam is striking at least two surfaces at the same time.
\end{tabular} & \begin{tabular}{l}
Perform measurement again when measuring condition becomes better. \\
Resight the target. \\
Choose a single surface target for distance measurement.
\end{tabular} \\
\hline \begin{tabular}{l}
CALC \\
ERROR
\end{tabular} & Calculation is impossible from the data input. & Confirm the input data. \\
\hline \begin{tabular}{l}
DELETE \\
ERROR
\end{tabular} & When deleting coordinate data, it can not be done successful. & Confirm the data and delete again. \\
\hline SIGNAL
OFF & Measuring conditions are poor, and there is not enough reflective light for measuring distances. & Resight the target. When using reflective prisms, effectiveness will be improved by increasing the number of prisms used. \\
\hline \[
\begin{gathered}
\text { E020's, } \\
\text { E031, E033 }
\end{gathered}
\] & EDM error & Repair is required. \\
\hline E35 & Displayed when REM measurement carried out to the range from zenith or nadir \(\pm 6^{\circ}\). & Operate in the range out of \(\pm 6^{\circ}\) from the zenith or nadir. \\
\hline E72 & Displayed when Vertical angle -position is adjusted in wrong position. & Repair is required. \\
\hline E73 & The instrument was not leveled when Vertical angle 0 -position is adjusted. & Level the instrument then carry the adjustment work. \\
\hline E80's & Mainly at the time data transmission between GM and external instrument. & Confirm operation procedure is correct or the connection cables are correct. \\
\hline E097 & EDM device error & Repair is required. \\
\hline E123, E124 & Tilt error & Contact your local dealer. \\
\hline E198 & Angle measurement error & Contact your local dealer. \\
\hline E201 & EDM distance measurement time out error & If the same error message is repeated, repair is required. \\
\hline E205 & Communication with EDM is poor & If the same error message is repeated, repair is required. \\
\hline \[
\begin{aligned}
& \text { FILE } \\
& \text { EXISTS }
\end{aligned}
\] & The same file name exists. & Use another file name. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline FULL & When making a file, 99 files already exist. & If necessary, send or delete files. \\
\hline LIMIT OVER & Limit of input data exceeded. & Input again. \\
\hline MEMORY ERROR & Any abnormality occurs with internal memory. & Initialize the internal memory. \\
\hline MEMORY POOR & Shortage of capacity of the internal memory. & Download data from internal memory to PC. \\
\hline NO DATA & The data is not found in the search mode & Confirm the data and search again. \\
\hline NO FILE & There is no file in internal memory. & If necessary, make files. \\
\hline FILE NOT SELECTED & When using a file, no file is selected. & Confirm the file and select a file. \\
\hline P1-P2 distance too short & When in point to line measurement, the horizontal distance between first point and second point is within 1 m . & The horizontal distance between first point and second point must be more than 1 m . \\
\hline CIRCULAR ERROR & Known points and occupied point are on the same circle at the resection mode. & Take the different point. \\
\hline PT\# EXIST & Same new point name is already memorized in the memory. & Confirm the new point name and input again. \\
\hline PT\# DOES NOT EXIST & When you enter incorrect name or PT\# does not exist in the internal memory. & Enter the correct name or enter point in the internal memory. \\
\hline RANGE ERROR & When setting a new point, calculation is impossible from the measured data. & Measure again. \\
\hline READ ONLY FILE & Read-only file on the USB flash drive cannot be changed and file contents cannot be deleted or edited. & Remove the read -only attribute of the file on your PC etc. \\
\hline \begin{tabular}{l}
Temp \\
RangeOUT
\end{tabular} & GM is outside useable temperature range and accurate measurement cannot be performed. & Repeat measurement within the appropriate temperature range. If the GM is used under direct sunlight, use an umbrella to protect it against the heat of the sun. \\
\hline Tilt Over & Instrument tilts over more than 6 minutes and 30 seconds. & Level the instrument properly. \\
\hline USB ERROR & An error has occurred in loading or saving data to USB flash drive. & \begin{tabular}{l}
Check if the USB flash drive is formatted to FAT32. \\
Insert the USB flash drive correctly. \\
If the error still occurs, use another USB flash drive.
\end{tabular} \\
\hline \begin{tabular}{l}
V ANGLE ERROR \\
H ANGLE ERROR \\
VH ANGLE ERROR
\end{tabular} & Abnormality in angle measuring system. & If this error code continues to display, repair is required. \\
\hline
\end{tabular}

\section*{24 SPECIFICATIONS}

Except where stated, the following specifications apply to all models of GM Series.

\section*{Telescope}

Length
Aperture
Magnification
Image
Resolving power
Field of view
Minimum focus
Reticle illumination

\section*{Angle measurement}

Horizontal and Vertical circles type
Detecting
GM-52:
GM-55:
Angle units
Minimum display
GM-52/55:

Accuracy
GM-52:
GM-55:
(ISO 17123-3 : 2001)
Measuring time
Collimation compensation
Measuring mode
Horizontal angle:
Vertical angle:

\section*{Tilt angle compensation}

Type
Minimum display
Range of compensation
Automatic compensator
Compensation constant
Distance Measurement
Measuring method
Signal source

Measuring range

Mini pole prism Prism- \(5^{*}{ }^{*}\) :
Standard prism Prism-2 \(\times 1^{* 3}\) :
Reflective sheet RS90N-K*4:
Reflective sheet RS50N-K*4:
Reflective sheet RS10N-K**:

171 mm
45 mm (EDM:48 mm)
30X
Erect
2.5"
\(1^{\circ} 30^{\prime}\)
1.3 m

5 brightness levels

Rotary absolute encoder
2 sides
1 side
Degree/Gon/Mil (selectable)
1" (0.0002 gon/0.005 mil)/5" (0.0010 gon/0.02 mil)
(selectable)
2" (0.0006 gon/0.010 mil)
5" (0.0015 gon/0.025 mil)
0.5 sec or less

On/Off (selectable)
Right/Left (selectable)
Zenith/Horizontal/Horizontal \(\pm 90^{\circ} / \%\) (selectable)

Liquid 2-axis tilt sensor
\(1 "\)
\(\pm 6^{\prime}(\pm 0.1111\) gon \()\)
ON (V \& H/V)/OFF (selectable)
Can be changed

Coaxial phase shift measuring system
Red laser diode (690 nm) Class 3R
(IEC60825-1 Ed.3.0: 2014/ FDA CDRH 21CFR Part 1040.10 and 1040.11 (Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No.50, dated June 24, 2007.)) (When the prism or reflective sheet is selected in Config mode as target, the output is equivalent to Class 1).
(Using the following reflective prism/reflective sheet target during normal atmospheric conditions*1 / *2 is good atmospheric conditions.)
1.3 to \(500 \mathrm{~m}(1,640 \mathrm{ft})\)
1.3 to \(4,000 \mathrm{~m}(13,120 \mathrm{ft})\)
\((1.3 \text { to } 4,000 \mathrm{~m}(13,120 \mathrm{ft}))^{*}{ }^{2}\)
1.3 to \(500 \mathrm{~m}(1,640 \mathrm{ft})\)
1.3 to \(300 \mathrm{~m}(980 \mathrm{ft})^{* 5}\)
1.3 to \(300 \mathrm{~m}(980 \mathrm{ft})\)
1.3 to \(180 \mathrm{~m}(590 \mathrm{ft})^{* 5}\)
1.3 to \(100 \mathrm{~m}(320 \mathrm{ft})\)
1.3 to \(60 \mathrm{~m}(190 \mathrm{ft})^{* 5}\)
```

    Reflectorless (White) : }\quad0.3\mathrm{ to }500\textrm{m (1,640 ft)}\mp@subsup{)}{}{*
    (0.3 to 500 m (1,640 ft)* * *7 *8
    Prism (tracking)*3: 1.3 to 1,000 m (3,280 ft)
    Reflective sheet target (tracking)*4: 1.3 to 350 m (1,140 ft)
    1.3 to 210 m (680 ft)*5
    Reflectorless (White) (tracking, road):0.3 to 300 m (980 ft)**
    Minimum display
Fine measurement: }\quad0.0001\textrm{m}(0.001\textrm{ft}/1/8 inch ) / 0.001 m (0.005 ft / 1/8 inch
(selectable)
Coarse measurement: }\quad0.001\textrm{m}(0.005\textrm{ft}/1/8 inch) / 0.01 m (0.02 ft / 1 inch
(selectable)
0 . 0 1 ~ m ~ ( 0 . 0 2 ~ f t ~ / ~ 1 ~ i n c h )
Maximum slope distance display
(Except for tracking)
Using prism or reflective sheet target: 9,600.000 m (31,490 ft)
Reflectorless: 1,200.000 m (3,930 ft)
(Tracking)
Using prism or reflective sheet target: 1,280.000 m (4,200 ft)
Reflectorless: 768.000 m (2,520ft)
Distance unit m/ft/inch (selectable)
Accuracy (D: measurement distance; Unit: mm) (Under normal atmospheric conditions **1)
(Using prism)*3
Fine measurement:
Rapid measurement:
(Using reflective sheet target)*4
Fine measurement:
Rapid measurement:
(Reflectorless (White))*}\mp@subsup{}{}{*
Fine measurement:
Rapid measurement:
Measurement mode
(1.5 + 2 ppm X D) mm*9*11
(5 + 2 ppm X D) mm
(2 + 2 ppm X D) mm
(5 + 2 ppm X D) mm
(2 + 2 ppm X D) mm (0.3 to 200 m)}\mp@subsup{}{}{*10
(5+10 ppm X D) mm (over 200 to 350 m)
(10 + 10 ppm X D) mm (over 350 to 500 m)
(6 + 2 ppm X D) mm (0.3 to 200 m)}\mp@subsup{}{}{*10
(8+10 ppm X D) mm (over 200 to 350 m)
(15 + 10 ppm X D) mm (over 350 to 500 m)
Fine measurement (single/repeat/average)/Rapid
measurement (single/repeat)/Tracking/Road
(reflectorless) (selectable)
Measuring time ${ }^{* 12}$.
(fastest time under good atmospheric conditions ${ }^{* 2}$, no compensation, EDM ALC at appropriate setting, slope distance)

```

Fine measurement:
Rapid measurement:
Tracking measurement:
Atmospheric correction:
Temperature input range:
Pressure input range:

Humidity input range:
ppm input range:
Prism constant correction
Earth curvature and refraction correction
Scale factor setting
Elevation
less than \(1.5 \mathrm{sec}+\) every 0.9 sec or less
less than \(1.3 \mathrm{sec}+\) every 0.6 sec or less
less than \(1.3 \mathrm{sec}+\) every 0.4 sec or less
-30.0 to \(60.0^{\circ} \mathrm{C}\) (in \(0.1^{\circ} \mathrm{C}\) step)/ -22.0 to \(140.0^{\circ} \mathrm{F}\) (in \(0.1^{\circ} \mathrm{F}\) step)
560.0 to \(1,066.0 \mathrm{hPa}\) (in 0.1 hPa step)
420.0 to 800.0 mmHg (in 0.1 mmHg step)
16.50 to 31.50 inchHg (in 0.01 inchHg step)
0.0 to \(100.0 \%\) (in \(0.1 \%\) step)
-999.9 to 999.9 ppm (in 0.1 ppm step)
-99.9 to 99.9 mm (in 0.1 mm step)
No/Yes K=0.14/Yes K=0.20 (selectable)
0.99 to 1.01
-9,999 to 9,999 m
```

*1: Slight haze, visibility about 20 km , sunny periods, weak scintillation.
*2: No haze, visibility about 40 km , overcast, no scintillation.
*3: Face the prism toward the instrument during the measurement with the distance at 10 m or less.
*4: Figures when the laser beam strikes within $30^{\circ}$ of the reflective sheet target.

```
*5: Measurement at 50 to \(60^{\circ} \mathrm{C}\) (122 to \(140^{\circ} \mathrm{F}\)) (Standard Model)
*6: Figures when using Kodak Gray Card White side (reflection factor 90\%), brightness level is less than 5,000 Ix and the laser beam strikes orthogonally the White side.
*7: Figures when using Kodak Gray Card White side (reflection factor 90\%), brightness level is less than 500 lx and the laser beam strikes orthogonally the White side. (800 m or more)
\({ }^{*} \mathbf{6},{ }^{*} \mathbf{7}\) : When performing reflectorless measurement, the possible measurement range and precision will change depending on the target reflection factor, weather conditions and location conditions.
*8: Figures may differ according to the country or the area.
*9: Accuracy is \((2+2 \mathrm{ppm} \times \mathrm{D}) \mathrm{mm}\) for distance range 1.3 to 2 m .
*10: Accuracy is (\(5+2 \mathrm{ppm} \times \mathrm{D}\)) mm for distance range 0.3 to 0.66 m or less.
*11: ISO 17123-4: 2012
*12: Figures are as follows when EDM eco mode is selected. Fine measurement: less than 2.0 sec + every 0.9 sec or less, Rapid measurement: less than \(1.8 \mathrm{sec}+\) every 0.6 sec or less, Tracking measurement: less than \(1.8 \mathrm{sec}+\) every 0.4 sec or less

\section*{Internal memory}

Capacity
about 50,000 points

\section*{External memory}

USB flash memory (up to 32GB)

\section*{Data transfer}

Data input/output
Asynchronous serial, RS232C compatible
USB Revision 2.0 (High Speed), Host (Type A), Only a USB flash drive is compatible.

\section*{Bluetooth wireless technology (Option)* \({ }^{* 13}\)}

Transmission method FHSS
Modulation GFSK (Gaussian-filtered frequency shift keying)
Frequency band \(\quad 2.402\) to 2.48 GHz
Bluetooth profile
Power class
Usable range

\section*{SPP, DUN}

Class 1.5
about 10 m (while in communication with FC-500)*14*15
*13: Bluetooth function may not be built in depending on telecommunications regulations of the country or the area where the instrument is purchased. Contact your local dealer for the details.
*14: No obstacles, few vehicles or sources of radio emissions/interference in the near vicinity of the instrument, no rain.
*15: Usage range could be shorter depending on specifications of Bluetooth device to communicate.

\section*{Power Supply}

Power source Rechargeable Li-ion battery BDC46C
Working duration at \(20^{\circ} \mathrm{C}\)
Distance and angle measurement (Fine single measurement = every 30 sec.) :

BDC46C:
(EDM eco. mode)
BDC46C: about 14 hours
Battery state indicator
Auto power-off
Battery (BDC46C)
Nominal voltage: \(\quad 7.2 \mathrm{~V}\)
Capacity:
Dimensions:
Weight:
Charger (CDC68A)
Input voltage:
Charging time per battery (at \(25^{\circ} \mathrm{C}\)):
100 to 240VAC
BDC46C:
about 2.5 hours (Charging can take longer than the times stated above when temperatures are either especially high or low.)
Charging temperature range: 0 to \(40^{\circ} \mathrm{C}\)
Storage temperature range: \(\quad-20\) to \(65^{\circ} \mathrm{C}\)
\begin{tabular}{ll}
Size: & \(94(\mathrm{~W}) \times 102(\mathrm{D}) \times 36(\mathrm{H}) \mathrm{mm}\) \\
Weight: & about 170 g
\end{tabular}

\section*{General}

Display unit

Backlight:
Operation panel (keyboard)
Sensitivity of levels
Circular level:
Electronic Circular levels:

Optical plummet
Image:
Magnification:
Minimum focus:
Laser plummet *16
Signal source:

Beam accuracy:
Spot diameter:
Brightness control:
Auto power-off:
Laser-pointer function
Operating temperature (no condensation)
Storage temperature range (no condensation)
Dust and water resistance:
Instrument height
Size (with handle)
Display on both sides:
Display on one side:
Weight (with handle and battery)

LCD graphic display, 192 dots \(\times 80\) dots
On/Off (selectable)
28 keys (soft function, operations, power on, light) with illuminator

10'/2 mm
Graphic display range: 6' (inner circle)
Digital display range: \(\pm 6^{\prime} 30 "\)
Erect
3X
0.5 m

Red laser diode \(635 \pm 10 \mathrm{~nm}\) (Class 2 IEC60825-1 Ed. 3.0:2014/FDA CDRH 21CFR Part 1040.10 and 1040.11 (Complies with FDA performance standards for laser products except for deviations pursuant to Laser Notice No.50, dated June 24, 2007.))
1 mm or less (when tripod head height is 1.3 m).
\(ø 3 \mathrm{~mm}\) or less
5 levels
Provided (power cut off after 5 minutes)
Provided On/Off (selectable)
-20 to \(60^{\circ} \mathrm{C}\left(-4\right.\) to \(\left.140^{\circ} \mathrm{F}\right){ }^{* 17}\)
-30 to \(70^{\circ} \mathrm{C}\left(-22\right.\) to \(\left.158^{\circ} \mathrm{F}\right)\)
IP66 (IEC 60529: 2001)
192.5 mm from tribrach mounting surface
\(236 \mathrm{~mm}+5 /-3 \mathrm{~mm}\) from tribrach bottom
183 (W) X 181 (D) X 348 (H) mm
183 (W) X 174 (D) X 348 (H) mm
5.1 kg (11.3 lb)
*16: Laser plummet is available as a factory option depending on the country or the area where the instrument is purchased.
*17: No direct sunlight for using high temperatures of 50 to \(60^{\circ} \mathrm{C}\left(122\right.\) to \(\left.140^{\circ} \mathrm{F}\right)\).

\section*{25 REGULATIONS}
\begin{tabular}{|c|c|c|}
\hline Region/ Country & Directives/ Regulations & Labels/Declarations \\
\hline U.S.A. & FCC-Class B & \begin{tabular}{l}
FCC Compliance \\
WARNING: \\
Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. \\
Note: \\
This equipment has been tested and found to comply with limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. \\
However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures: \\
- Reorient or relocate the receiving antenna. \\
- Increase the separation between the equipment and receiver. \\
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected. \\
- Consult the dealer or an experienced radio / TV technician for help. \\
Means of conformity \\
This device complies with part 15 of the FCC Rules, Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation. \\
This transmitter must not be co-located or operated in conjunction with any other antenna or transmitter. \\
This equipment complies with FCC radiation exposure limits set forth for an uncontrolled environment and meets the FCC radio frequency (RF) Exposure Guidelines. This equipment has very low levels of RF energy that it deemed to comply without maximum permissive exposure evaluation (MPE). But it is desirable that it should be installed and operated keeping the radiator at least 20 cm or more away from person's body.
\end{tabular} \\
\hline California, U.S.A. & Proposition 65 & WARNING : Handling the cord on this product or cords associated with accessories sold with this product, will expose you to lead, a chemical known to the State of California to cause birth defects or other reproductive harm. Wash hands after handling. \\
\hline California, U.S.A. & Perchlorate Material (CR Lithium Battery) & This product contains a CR Lithium Battery which contains Perchlorate Material-special handling may apply. See http://www.dtsc.ca.gov/hazardouswaste/perchlorate/ Note ; This is applicable to California, U.S.A. only \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Region/ Country & Directives/ Regulations & Labels/Declarations \\
\hline California and NY, U.S.A. & Recycling Batteries & \begin{tabular}{l}
DON'T THROW AWAY RECHARGEABLE BATTERIES, RECYCLE THEM. \\
Topcon Positioning Systems Inc., United States Return Process for UsedRechargeable Nickel Metal Hydride, Nickel Cadmium, Small Sealed Lead Acid, and Lithium Ion, Batteries \\
In the United States Topcon Positioning Systems Inc., has established a process by which Topcon customers may return used rechargeable Nickel Metal Hydride(Ni-MH), Nickel Cadmium(Ni-Cd), Small Sealed Lead Acid(Pb), and Lithium lon(Li-ion) batteries to Topcon for proper recycling and disposal. Only Topcon batteries will be accepted in this process. \\
Proper shipping requires that batteries or battery packs must be intact and show no signs of leaking. The metal terminals on the individual batteries must be covered with tape to prevent short circuiting and heat buildup or batteries can be placed in individual plastic bag. Battery packs should not be dissembled prior to return. \\
Topcon customers are responsible for complying with all federal, state, and local regulations pertaining to packing, labeling, and shipping of batteries. Packages must include a completed return address, be prepaid by the shipper, and travel by surface mode. Under no circumstance should used/recyclable batteries by shipped by air. \\
Failure to comply with the above requirements will result in the rejection of the package at the shipper's expense. \\
Please remit packages to: Topcon Positioning Systems, Inc. C/O Battery Return Dept. 150 7400 National Dr. \\
Livermore, CA 94551 \\
DON'T THROW AWAY RECHARGEABLE BATTERIES, RECYCLE THEM.
\end{tabular} \\
\hline Canada & ICES-Class B & \begin{tabular}{l}
This class B digital apparatus meets all requirements of Canadian interference-Causing Equipment Regulations. \\
Cet appareil numérique de la class B respecte toutes les exigences du Réglement sur le matérique brouilleur du Canada. \\
This Class B digital apparatus complies with Canadian ICES-003 Cet appareil numerique de la Class B est conforme a la norme NMB003 du Canada. \\
Operation is subject to the following two conditions: (1) this device may not cause interference, and (2) this device must accept any interference, including interference that may cause undesired operation of this device. \\
This equipment complies with IC radiation exposure limits set forth for an uncontrolled environment and meets the RSS-102 of the IC radio frequency (RF) Exposure Guidelines. This equipment has very low levels of RF energy that it deemed to comply without maximum permissive exposure evaluation (MPE). But it is desirable that it should be installed and operated keeping the radiator at least 20 cm or more away from person's body.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Region/ Country & Directives/ Regulations & Labels/Declarations \\
\hline EU & \[
\begin{aligned}
& \text { EMC-Class B } \\
& \text { RE }
\end{aligned}
\] & \begin{tabular}{l}
EMC NOTICE \\
In industrial locations or in proximity to industrial power installations, this instrument might be affected by electromagnetic noise. Under such conditions, please test the instrument performance before use. \\
This product complies with the electromagnetic environmental testing of industrial locations. \\
Hereby, TOPCON CORPORATION declares that the radio equipment type of this product is in compliance with Directive 2014/53/EU. \\
EU declaration of conformity is available depending on your request. \\
Contact your local dealer. \\
Manufacturer \\
Name: TOPCON CORPORATION \\
Address: 75-1, Hasunuma-cho, Itabashi-ku, Tokyo, \\
174-8580 JAPAN \\
Europe Representative and Importer \\
Name: Topcon Europe Positioning B.V. \\
Address: Essebaan 11, 2908 LJ Capelle a/d IJssel, \\
The Netherlands
\end{tabular} \\
\hline EU & WEEE Directive & \begin{tabular}{l}
WEEE Directive \\
This symbol is applicable to EU members states only. \\
Following information is only for EU-member states: \\
The use of the symbol indicates that this product may not be treated as household waste. By ensuring this product is disposed of correctly, you will help prevent potential negative consequences for the environment and human health, which could otherwise be caused by inappropriate waste handling of this product. For more detailed information about the take-back and recycling of this product, please contact your supplier where you purchased the product or consult.
\end{tabular} \\
\hline EU & EU Battery Directive & \begin{tabular}{l}
EU Battery Directive \\
This symbol is applicable to EU members states only. \\
Battery users must not dispose of batteries as unsorted general waste, but treat properly. \\
If a chemical symbol is printed beneath the symbol shown above, this chemical symbol means that the battery or accumulator contains a heavy metal at a certain concentration. This will be indicated as follows: \\
Hg: mercury(0.0005\%), Cd: cadmium(0.002\%), Pb: lead(0.004\%) \\
These ingredients may be seriously hazardous to human and the global environment. \\
This product contains a coin cell. \\
You cannot replace batteries by yourself. When you need to replace and/or dispose batteries, contact your local dealer.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline Region／ Country & Directives／ Regulations & Labels／Declarations \\
\hline China & \begin{tabular}{l}
Chinese \\
Environmental Directive
\end{tabular} & \begin{tabular}{l}
＜产品中有䓯有害物质或元素的名称及含量＞ \\
环保使男期限标识是根据《电子信息产品污染控制管理办法》以及《电子信息产品污然控制标识要求》制定的， \\
 \\
有害物质不致发生外议或实变，不致对环境造成严重污染或对其人身，财产造成严重损害。 \\
另外，此期限不同于质量／功能的保证期限。 \\
The Mark and Information are applicable for Peopele＇s Republic of China only．
\end{tabular} \\
\hline Taiwan & NCC & \begin{tabular}{l}
低功率電波輻射性電機管理辦法 \\
第十二條 \\
經型式認證合格之低功率射頻電機，非經許可，公司，商號或使用者均不得 \\
擅自變更頻率•加大功率或變更原設計之特性及功能。 \\
第十四條 \\
低功率射頻電機之使用不得影響飛航安全及干擾合法通信；經發現有干擾現 \\
象時，應立即停用，並改善至無干擾時方得䊽緬使用。 \\
前項合法通信，指依電信法規定作業之無線電通信。 \\
低功率射頻電機須忍受合法通信或工業，科學及覴療用電波輻射性電機設備之干擾。
\end{tabular} \\
\hline
\end{tabular}

\section*{TOPCON CORPORATION (Manufacturer)}

75-1 Hasunuma-cho, Itabashi-ku, Tokyo 174-8580, Japan http://www.topcon.co.jp
Please see the attached address list or the following website for contact addresses.```

[^0]: Note

 - If the Bluetooth device for communication requires your passkey, enter "1111."

